DOI QR코드

DOI QR Code

Augmenting external surface pressures' predictions on isolated low-rise buildings using CFD simulations

  • Md Faiaz, Khaled (Windstorm Impact, Science and Engineering (WISE) Research Lab, Department of Civil and Environmental Engineering, Louisiana State University) ;
  • Aly Mousaad Aly (Windstorm Impact, Science and Engineering (WISE) Research Lab, Department of Civil and Environmental Engineering, Louisiana State University)
  • Received : 2022.09.12
  • Accepted : 2023.06.08
  • Published : 2023.10.25

Abstract

The aim of this paper is to enhance the accuracy of predicting time-averaged external surface pressures on low-rise buildings by utilizing Computational Fluid Dynamics (CFD) simulations. To achieve this, benchmark studies of the Silsoe cube and the Texas Tech University (TTU) experimental building are employed for comparison with simulation results. The paper is structured into three main sections. In the initial part, an appropriate domain size is selected based on the precision of mean pressure coefficients on the windward face of the cube, utilizing Reynolds Averaged Navier-Stokes (RANS) turbulence models. Subsequently, recommendations regarding the optimal computational domain size for an isolated building are provided based on revised findings. Moving on to the second part, the Silsoe cube model is examined within a horizontally homogeneous computational domain using more accurate turbulence models, such as Large Eddy Simulation (LES) and hybrid RANS-LES models. For computational efficiency, transient simulation settings are employed, building upon previous studies by the authors at the Windstorm Impact, Science, and Engineering (WISE) Lab, Louisiana State University (LSU). An optimal meshing strategy is determined for LES based on a grid convergence study. Three hybrid RANS-LES cases are investigated to achieve desired enhancements in the distribution of mean pressure coefficients on the Silsoe cube. In the final part, a 1:10 scale model of the TTU building is studied, incorporating the insights gained from the second part. The generated flow characteristics, including vertical profiles of mean velocity, turbulence intensity, and velocity spectra (small and large eddies), exhibit good agreement with full-scale (TTU) measurements. The results indicate promising roof pressures achieved through the careful consideration of meshing strategy, time step, domain size, inflow turbulence, near-wall treatment, and turbulence models. Moreover, this paper demonstrates an improvement in mean roof pressures compared to other state-of-the-art studies, thus highlighting the significance of CFD simulations in building aerodynamics.

Keywords

Acknowledgement

The second author received funding from the Louisiana Board of Regents through the Industrial Ties Research Subprogram (ITRS) under the auspices of LEQSF(2022-25)-RD-B-02. The opinions expressed in this work solely represent those of the authors and do not necessarily reflect the views of the sponsor.

References

  1. Aboshosha, H., Elshaer, A., Bitsuamlak, G.T. and El Damatty, A. (2015), "Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings", J. Wind Eng. Ind. Aerod., 142, 198-216. https://doi.org/10.1016/j.jweia.2015.04.004.
  2. Akins, R.E., Peterka, J.A. and Cermak, J.E. (1977), "Mean force and moment coefficients for buildings in turbulent boundary layers," J. Wind Eng. Ind. Aerod., 2(3), 195-09. https://doi.org/10.1016/0167-6105(77)90022-8.
  3. Aly, A.M. (2014), "Atmospheric boundary-layer simulation for the built environment: Past, present and future", Build. Environ., 75, 206-221. https://doi.org/10.1016/j.buildenv.2014.02.004.
  4. Aly, A.M. and Bresowar, J. (2016), "Aerodynamic mitigation of wind-induced uplift forces on low-rise buildings: A comparative study", J. Build. Eng., 5. https://doi.org/10.1016/j.jobe.2016.01.007.
  5. Aly, A.M., Chokwitthaya, C. and Poche, R. (2017), "Retrofitting building roofs with aerodynamic features and solar panels to reduce hurricane damage and enhance eco-friendly energy production", Sustain. Cities Soc., 35. https://doi.org/10.1016/j.scs.2017.09.002.
  6. Aly, A.M., Chowdhury, A.G. and Erwin, J. (2013), "Design and fabrication of a new open jet electric-fan wall of wind facility for coastal research," Coast. Hazards - Sel. Pap. from EMI 2010, (2).
  7. Aly, A.M. and da Fonseca Yousef, N. (2021), "High Reynolds number aerodynamic testing of a roof with parapet", Eng. Struct., 234(2021), 112006. https://doi.org/10.1016/j.engstruct.2021.112006.
  8. Aly, A.M. and Gol-Zaroudi, H. (2017), "Atmospheric boundary layer simulation in a new open-jet facility at LSU: CFD and experimental investigations", Measurement, 110, 121-133. https://doi.org/10.1016/j.measurement.2017.06.027.
  9. Aly, A.M. and Gol-Zaroudi, H. (2020), "Peak pressures on low rise buildings: CFD with LES versus full scale and wind tunnel measurements," Wind Struct. An Int. J., 30(1), 99-117. https://doi.org/10.12989/was.2020.30.1.099.
  10. Aly, A.M., Khaled, F. and Gol-Zaroudi, H. (2020), "Aerodynamics of low-rise buildings: Challenges and recent advances in experimental and computational methods", IntechOpen. https://doi.org/10.1016/j.colsurfa.2011.12.014.
  11. Aly, A.M., Khaled, M.F. and Clancy, R. (2022), "Large-Scale Open-Jet Testing: A new frontier in structural wind Engineering", Eng. Struct., 266, 114567. https://doi.org/10.1016/j.engstruct.2022.114567.
  12. Bouffanais, R. (2010), "Advances and challenges of applied large-eddy simulation", Comput. Fluids, 39(5), 735-738. https://doi.org/10.1016/j.compfluid.2009.12.003.
  13. Cao, R., Yu, Z., Liu, Z., Chen, X. and Zhu, F. (2020), "Airflow over low-sloped gable roof buildings: Wind tunnel experiment and CFD simulations", Wind Struct., 31(4), 351-362.
  14. Cindori, M., Juretic, F., Kozmar, H. and Dzijan, I. (2018), "Steady RANS model of the homogeneous atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 173, 289-301. https://doi.org/10.1016/j.jweia.2017.12.006.
  15. Cochran, L.S. and Cermak, J.E. (1992), "Full- and model-scale cladding pressures on the Texas Tech University experimental building", J. Wind Eng. Ind. Aerod., 43(1-3), 1589-1600. https://doi.org/10.1016/0167-6105(92)90374-J.
  16. Franke, J., Hellsten, A., Schlunzen, K.H. and Carissimo, B. (2011), "The COST 732 Best Practice Guideline for CFD simulation of flows in the urban environment: a summary", Int. J. Environ. Pollut., 44(1-4), 419-427. https://doi.org/10.1504/IJEP.2011.038443
  17. Frohlich, J., Mellen, C.P., Rodi, W., Temmerman, L. and Leschziner, M.A. (2005), "Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions", J. Fluid Mech., 526, 19-66. https://doi.org/10.1017/S0022112004002812.
  18. Gol-Zaroudi, H. and Aly, A.M. (2017), "Open-jet boundary-layer processes for aerodynamic testing of low-rise buildings", Wind Struct., 25(3), 233-259. https://doi.org/10.12989/was.2017.25.3.233.
  19. Guichard, R. (2019), "Assessment of an improved Random Flow Generation method to predict unsteady wind pressures on an isolated building using Large-Eddy Simulation", J. Wind Eng. Ind. Aerody., 189, 304-313. https://doi.org/10.1016/j.jweia.2019.04.006.
  20. He, J., Pan, F. and Cai, C.S. (2017), "A review of wood-frame low-rise building performance study under hurricane winds", Eng. Struct., 141, 512-529. https://doi.org/10.1016/j.engstruct.2017.03.036.
  21. Holmes, J.D. (2014), "Along- and cross-wind response of a generic tall building: Comparison of wind-tunnel data with codes and standards", J. Wind Eng. Ind. Aerod., 132, 136-141. https://doi.org/10.1016/j.jweia.2014.06.022.
  22. Hoxey, R.P., Reynolds, A.M., Richardson, G.M., Robertson, A.P. and Short, J.L. (1998), "Observations of Reynolds number sensitivity in the separated flow region on a bluff body", J. Wind Eng. Ind. Aerod., 73(3), 231-249. https://doi.org/10.1016/S0167-6105(97)00287-0
  23. Hoxey, R.P., Robertson, A.P., Richardson, G.M. and Short, J.L. (1997), "Correction of wind-tunnel pressure coefficients for Reynolds number effect", J. Wind Eng. Ind. Aerod., 69-71, 547-555. https://doi.org/10.1016/S0167-6105(97)00185-2.
  24. Khaled, M., Aly, A. and Elshaer, A. (2021), "Computational efficiency of CFD modeling for building engineering: An empty domain study", J. Build. Eng., https://doi.org/10.1016/j.jobe.2021.102792.
  25. Khaled, M.F. and Aly, A.M. (2022), "Assessing aerodynamic loads on low-rise buildings considering Reynolds number and turbulence effects: A review", Adv. Aerod., 4(1), 1-33. https://doi.org/10.1186/s42774-021-00088-5
  26. Kim, R. woo, Lee, I. bok and Kwon, K. seok (2017), "Evaluation of wind pressure acting on multi-span greenhouses using CFD technique, Part 1: Development of the CFD model", Biosyst. Eng., 164, 235-256. https://doi.org/10.1016/j.biosystemseng.2017.09.008.
  27. Kim, R. woo, Lee, I. bok, Yeo, U. hyeon and Lee, S. yeon (2019), "Estimating the wind pressure coefficient for single-span greenhouses using an large eddy simulation turbulence model", Biosyst. Eng., 188, 114-135. https://doi.org/10.1016/j.biosystemseng.2019.10.009.
  28. Kopp, G.A. and Morrison, M.J. (2018), "Component and cladding wind loads for low-slope roofs on low-rise buildings", J. Struct. Eng., 144(4). https://doi.org/10.1061/(asce)st.1943-541x.0001989.
  29. Kose, D.A. and Dick, E. (2010), "Prediction of the pressure distribution on a cubical building with implicit LES", J. Wind Eng. Ind. Aerod., 98(10-11), 628-649. https://doi.org/10.1016/j.jweia.2010.06.004.
  30. Lee, D.S.-H. and Mauree, D. (2021), "RANS based CFD simulations for urban wind prediction-field verification against MoTUS", Wind Struct., 33(1), 29-40. https://doi.org/10.12989/WAS.2021.33.1.029
  31. Li, Q.S. and Hu, S.Y. (2014), "Monitoring of wind effects on a low-rise building during typhoon landfalls and comparison to wind tunnel test results", Struct. Control Heal. Monit., 19(1), 88-106. https://doi.org/10.1002/stc.
  32. Lim, H.C., Thomas, T.G. and Castro, I.P. (2009), "Flow around a cube in a turbulent boundary layer: LES and experiment", J. Wind Eng. Ind. Aerod., 97, 96-109. https://doi.org/10.1016/j.jweia.2009.01.001.
  33. Liu, J. and Niu, J. (2016), "CFD simulation of the wind environment around an isolated high-rise building: An evaluation of SRANS, LES and DES models", Build. Environ., 96, 91-106. https://doi.org/10.1016/j.buildenv.2015.11.007.
  34. Liu, Q., Zhao, Y., Cai, S. and Dong, S. (2020), "Wind loads and wind-resistant behaviour of large cylindrical tanks in square-arrangement group. Part 2: CFD simulation and finite element analysis", Wind Struct., 31(6), 495-508.
  35. Liu, X., Niu, J. and Kwok, K.C.S. (2013), "Evaluation of RANS turbulence models for simulating wind-induced mean pressures and dispersions around a complex-shaped high-rise building", Build. Simul., 6, 151-164. https://doi.org/10.1007/s12273-012-0097-0.
  36. Liu, Zhenqing, Diao, Z. and Ishihara, T. (2019), "Study of the flow fields over simplified topographies with different roughness conditions using large eddy simulations", Renew. Energy, 136, 968-992. https://doi.org/10.1016/j.renene.2019.01.032.
  37. Liu, Zhixiang, Yu, Z., Chen, X., Cao, R. and Zhu, F. (2020), "An investigation on external airflow around low-rise building with various roof types: PIV measurements and LES simulations", Build. Environ., 169, 106583. https://doi.org/10.1016/j.buildenv.2019.106583.
  38. Long, F. (2004), Uncertainties in pressure coefficients derived from full and model scale data, Masters Dessertation, Texas Tech UniversityTexas Tech University. https://doi.org/https://ttu-ir.tdl.org/handle/2346/15683?locale-attribute=de
  39. Mittal, R. and Moin, P. (1997), "Suitability of upwind-biased finite difference schemes for large-Eddy simulation of turbulent flows", AIAA J., 35(8), 2746-2757. https://doi.org/10.2514/2.253.
  40. Murakami, S., Mochida, A. and Hayashi, Y. (1990), "Examining the κ-ϵ model by means of a wind tunnel test and large-eddy simulation of the turbulence structure around a cube", J. Wind Eng. Ind. Aerod., 35, 87-100. https://doi.org/10.1016/0167-6105(90)90211-T.
  41. Murray, J. (2022), "Four Years Later: USACE and Tyndall AFB Continues Partnership in Base Rebuild.,"
  42. Nozawa, K. and Tamura, T. (2002), "Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layer", J. Wind Eng. Ind. Aerod., 90(10), 1151-1162. https://doi.org/10.1016/S0167-6105(02)00228-3.
  43. Ong, R.H., Patruno, L., Yeo, D., He, Y. and Kwok, K.C.S. (2020), "Numerical simulation of wind-induced mean and peak pressures around a low-rise structure", Eng. Struct., 214, 110583. https://doi.org/10.1016/j.engstruct.2020.110583
  44. Peng, Y., Zhao, W. and Ai, X. (2019), "Field measurement and CFD simulation of wind pressures on rectangular attic", Wind Struct., 29(6), 471-488. https://doi.org/10.12989/WAS.2019.29.6.471
  45. Richards, P. . and Hoxey, R.P. (2002), "Unsteady flow on the sides of a 6m cube", J. Wind Eng. Ind. Aerod., 90(12-15), 1855-1866. https://doi.org/10.1016/S0167-6105(02)00293-3.
  46. Richards, P.J. and Hoxey, R.P. (2006), "Flow reattachment on the roof of a 6 m cube", J. Wind Eng. Ind. Aerod., 94(2), 77-99. https://doi.org/10.1016/j.jweia.2005.12.002.
  47. Richards, P.J. and Hoxey, R.P. (2012a), "Pressures on a cubic building-Part 1: Full-scale results", J. Wind Eng. Ind. Aerod., 102, 72-86. https://doi.org/10.1016/j.jweia.2011.11.004.
  48. Richards, P.J. and Hoxey, R.P. (2012b), "Pressures on a cubic building-Part 2: Quasi-steady and other processes", J. Wind Eng. Ind. Aerod., 102, 87-96. https://doi.org/10.1016/j.jweia.2011.11.003.
  49. Richards, P.J. and Norris, S.E. (2011), "Appropriate boundary conditions for computational wind engineering models revisited", J. Wind Eng. Ind. Aerod., 99(4), 257-266. https://doi.org/10.1016/j.jweia.2010.12.008.
  50. Richards, P.J and Hoxey, R.P. (2008), "Wind loads on the roof of a 6 m cube", 96, 984-993. https://doi.org/10.1016/j.jweia.2007.06.032.
  51. Richards, Peter J. and Hoxey, R.P. (2004), "Quasi-steady theory and point pressures on a cubic building". J. Wind Eng. Ind. Aerod., 92(14-15), 1173-1190. https://doi.org/10.1016/j.jweia.2004.07.003.
  52. Sadek, F. and Simiu, E. (2002), "Peak Non-Gaussian wind effects for database-assisted low-rise building design", J. Eng. Mech., 128(5), 530-539. https://doi.org/10.1061/(asce)0733-9399(2002)128:5(530).
  53. Sengupta, A.R., Biswas, A. and Gupta, R. (2021), "Aerodynamic analysis of cambered blade H-Darrieus rotor in low wind velocity using CFD", Wind Struct., 33(6), 471-480.
  54. Smith, D., Mehta, K. and Morse, S. (2018), "Wind Engineering Research Field Laboratory Selected Data Sets for Comparison to Model-Scale, Full-Scale and Computational Fluid Dynamics Simulations", Wind Eng. Res. F. Lab. Sel. Data Sets Comp. to Model. Full-Scale Comput. Fluid. Des. Dyn. Simulations. 10.17603/DS24D68
  55. Tamura, T. (2008), "Towards practical use of LES in wind engineering", J. Wind Eng. Ind. Aerod., 96(10-11), 1451-1471. https://doi.org/10.1016/j.jweia.2008.02.034.
  56. Tieleman, H.W. (2003), "Wind tunnel simulation of wind loading on low-rise structures: A review", J. Wind Eng. Ind. Aerod., 91(12-15), 1627-1649. https://doi.org/10.1016/j.jweia.2003.09.021.
  57. Tokyo Polytechnic University (2007), Aerodynamic Database for Low-Rise Buildings, https://doi.org/http://wind.arch.tkougei.ac.jp/system/eng/contents/code/tpu.
  58. Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M. and Shirasawa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Ind. Aerod., 96(10), 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058.
  59. Verma, A. and Mahesh, K. (2012), "A Lagrangian subgrid-scale model with dynamic estimation of Lagrangian time scale for large eddy simulation of complex flows", Phys. Fluids, 24(8), 085101. https://doi.org/10.1063/1.4737656.
  60. Wang, X., Li, Q. and Li, J. (2020), "Field monitoring and wind tunnel study of wind effects on roof overhang of a low-rise building", Struct. Control Heal. Monit., 27(3). https://doi.org/10.1002/stc.2484.
  61. Wright, N.G. and Easom, G.J. (2003), "Non-linear k-ε turbulence model results for flow over a building at full-scale", Appl. Math. Model., 27(12), 1013-1033. https://doi.org/10.1016/S0307-904X(03)00123-9.
  62. Xing, F., Mohotti, D. and Chauhan, K. (2018), "Study on localised wind pressure development in gable roof buildings having different roof pitches with experiments, RANS and LES simulation models", Build. Environ., 143, 240-257. https://doi.org/10.1016/j.buildenv.2018.07.026.
  63. Xu, M., Patruno, L., Lo, Y.-L., de Miranda, S. and Ubertini, F. (2022), "On the numerical simulation of perforated bluff-bodies: a cfd study on a hollow porous 5: 1 rectangular cylinder", Wind Struct., 34(1), 1-14.
  64. Xu, Y.L. (1995), "Model- and full-scale comparison of fatiguerelated characteristics of wind pressures on the Texas Tech Building", J. Wind Eng. Ind. Aerod., 58(3), 147-173. https://doi.org/10.1016/0167-6105(95)00012-7.
  65. You, D., Ham, F. and Moin, P. (2008), "Discrete conservation principles in large-eddy simulation with application to separation control over an airfoil", Phys. Fluids, 20(10), https://doi.org/101515. 10.1063/1.3006077.