Acknowledgement
The second author received funding from the Louisiana Board of Regents through the Industrial Ties Research Subprogram (ITRS) under the auspices of LEQSF(2022-25)-RD-B-02. The opinions expressed in this work solely represent those of the authors and do not necessarily reflect the views of the sponsor.
References
- Aboshosha, H., Elshaer, A., Bitsuamlak, G.T. and El Damatty, A. (2015), "Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings", J. Wind Eng. Ind. Aerod., 142, 198-216. https://doi.org/10.1016/j.jweia.2015.04.004.
- Akins, R.E., Peterka, J.A. and Cermak, J.E. (1977), "Mean force and moment coefficients for buildings in turbulent boundary layers," J. Wind Eng. Ind. Aerod., 2(3), 195-09. https://doi.org/10.1016/0167-6105(77)90022-8.
- Aly, A.M. (2014), "Atmospheric boundary-layer simulation for the built environment: Past, present and future", Build. Environ., 75, 206-221. https://doi.org/10.1016/j.buildenv.2014.02.004.
- Aly, A.M. and Bresowar, J. (2016), "Aerodynamic mitigation of wind-induced uplift forces on low-rise buildings: A comparative study", J. Build. Eng., 5. https://doi.org/10.1016/j.jobe.2016.01.007.
- Aly, A.M., Chokwitthaya, C. and Poche, R. (2017), "Retrofitting building roofs with aerodynamic features and solar panels to reduce hurricane damage and enhance eco-friendly energy production", Sustain. Cities Soc., 35. https://doi.org/10.1016/j.scs.2017.09.002.
- Aly, A.M., Chowdhury, A.G. and Erwin, J. (2013), "Design and fabrication of a new open jet electric-fan wall of wind facility for coastal research," Coast. Hazards - Sel. Pap. from EMI 2010, (2).
- Aly, A.M. and da Fonseca Yousef, N. (2021), "High Reynolds number aerodynamic testing of a roof with parapet", Eng. Struct., 234(2021), 112006. https://doi.org/10.1016/j.engstruct.2021.112006.
- Aly, A.M. and Gol-Zaroudi, H. (2017), "Atmospheric boundary layer simulation in a new open-jet facility at LSU: CFD and experimental investigations", Measurement, 110, 121-133. https://doi.org/10.1016/j.measurement.2017.06.027.
- Aly, A.M. and Gol-Zaroudi, H. (2020), "Peak pressures on low rise buildings: CFD with LES versus full scale and wind tunnel measurements," Wind Struct. An Int. J., 30(1), 99-117. https://doi.org/10.12989/was.2020.30.1.099.
- Aly, A.M., Khaled, F. and Gol-Zaroudi, H. (2020), "Aerodynamics of low-rise buildings: Challenges and recent advances in experimental and computational methods", IntechOpen. https://doi.org/10.1016/j.colsurfa.2011.12.014.
- Aly, A.M., Khaled, M.F. and Clancy, R. (2022), "Large-Scale Open-Jet Testing: A new frontier in structural wind Engineering", Eng. Struct., 266, 114567. https://doi.org/10.1016/j.engstruct.2022.114567.
- Bouffanais, R. (2010), "Advances and challenges of applied large-eddy simulation", Comput. Fluids, 39(5), 735-738. https://doi.org/10.1016/j.compfluid.2009.12.003.
- Cao, R., Yu, Z., Liu, Z., Chen, X. and Zhu, F. (2020), "Airflow over low-sloped gable roof buildings: Wind tunnel experiment and CFD simulations", Wind Struct., 31(4), 351-362.
- Cindori, M., Juretic, F., Kozmar, H. and Dzijan, I. (2018), "Steady RANS model of the homogeneous atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 173, 289-301. https://doi.org/10.1016/j.jweia.2017.12.006.
- Cochran, L.S. and Cermak, J.E. (1992), "Full- and model-scale cladding pressures on the Texas Tech University experimental building", J. Wind Eng. Ind. Aerod., 43(1-3), 1589-1600. https://doi.org/10.1016/0167-6105(92)90374-J.
- Franke, J., Hellsten, A., Schlunzen, K.H. and Carissimo, B. (2011), "The COST 732 Best Practice Guideline for CFD simulation of flows in the urban environment: a summary", Int. J. Environ. Pollut., 44(1-4), 419-427. https://doi.org/10.1504/IJEP.2011.038443
- Frohlich, J., Mellen, C.P., Rodi, W., Temmerman, L. and Leschziner, M.A. (2005), "Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions", J. Fluid Mech., 526, 19-66. https://doi.org/10.1017/S0022112004002812.
- Gol-Zaroudi, H. and Aly, A.M. (2017), "Open-jet boundary-layer processes for aerodynamic testing of low-rise buildings", Wind Struct., 25(3), 233-259. https://doi.org/10.12989/was.2017.25.3.233.
- Guichard, R. (2019), "Assessment of an improved Random Flow Generation method to predict unsteady wind pressures on an isolated building using Large-Eddy Simulation", J. Wind Eng. Ind. Aerody., 189, 304-313. https://doi.org/10.1016/j.jweia.2019.04.006.
- He, J., Pan, F. and Cai, C.S. (2017), "A review of wood-frame low-rise building performance study under hurricane winds", Eng. Struct., 141, 512-529. https://doi.org/10.1016/j.engstruct.2017.03.036.
- Holmes, J.D. (2014), "Along- and cross-wind response of a generic tall building: Comparison of wind-tunnel data with codes and standards", J. Wind Eng. Ind. Aerod., 132, 136-141. https://doi.org/10.1016/j.jweia.2014.06.022.
- Hoxey, R.P., Reynolds, A.M., Richardson, G.M., Robertson, A.P. and Short, J.L. (1998), "Observations of Reynolds number sensitivity in the separated flow region on a bluff body", J. Wind Eng. Ind. Aerod., 73(3), 231-249. https://doi.org/10.1016/S0167-6105(97)00287-0
- Hoxey, R.P., Robertson, A.P., Richardson, G.M. and Short, J.L. (1997), "Correction of wind-tunnel pressure coefficients for Reynolds number effect", J. Wind Eng. Ind. Aerod., 69-71, 547-555. https://doi.org/10.1016/S0167-6105(97)00185-2.
- Khaled, M., Aly, A. and Elshaer, A. (2021), "Computational efficiency of CFD modeling for building engineering: An empty domain study", J. Build. Eng., https://doi.org/10.1016/j.jobe.2021.102792.
- Khaled, M.F. and Aly, A.M. (2022), "Assessing aerodynamic loads on low-rise buildings considering Reynolds number and turbulence effects: A review", Adv. Aerod., 4(1), 1-33. https://doi.org/10.1186/s42774-021-00088-5
- Kim, R. woo, Lee, I. bok and Kwon, K. seok (2017), "Evaluation of wind pressure acting on multi-span greenhouses using CFD technique, Part 1: Development of the CFD model", Biosyst. Eng., 164, 235-256. https://doi.org/10.1016/j.biosystemseng.2017.09.008.
- Kim, R. woo, Lee, I. bok, Yeo, U. hyeon and Lee, S. yeon (2019), "Estimating the wind pressure coefficient for single-span greenhouses using an large eddy simulation turbulence model", Biosyst. Eng., 188, 114-135. https://doi.org/10.1016/j.biosystemseng.2019.10.009.
- Kopp, G.A. and Morrison, M.J. (2018), "Component and cladding wind loads for low-slope roofs on low-rise buildings", J. Struct. Eng., 144(4). https://doi.org/10.1061/(asce)st.1943-541x.0001989.
- Kose, D.A. and Dick, E. (2010), "Prediction of the pressure distribution on a cubical building with implicit LES", J. Wind Eng. Ind. Aerod., 98(10-11), 628-649. https://doi.org/10.1016/j.jweia.2010.06.004.
- Lee, D.S.-H. and Mauree, D. (2021), "RANS based CFD simulations for urban wind prediction-field verification against MoTUS", Wind Struct., 33(1), 29-40. https://doi.org/10.12989/WAS.2021.33.1.029
- Li, Q.S. and Hu, S.Y. (2014), "Monitoring of wind effects on a low-rise building during typhoon landfalls and comparison to wind tunnel test results", Struct. Control Heal. Monit., 19(1), 88-106. https://doi.org/10.1002/stc.
- Lim, H.C., Thomas, T.G. and Castro, I.P. (2009), "Flow around a cube in a turbulent boundary layer: LES and experiment", J. Wind Eng. Ind. Aerod., 97, 96-109. https://doi.org/10.1016/j.jweia.2009.01.001.
- Liu, J. and Niu, J. (2016), "CFD simulation of the wind environment around an isolated high-rise building: An evaluation of SRANS, LES and DES models", Build. Environ., 96, 91-106. https://doi.org/10.1016/j.buildenv.2015.11.007.
- Liu, Q., Zhao, Y., Cai, S. and Dong, S. (2020), "Wind loads and wind-resistant behaviour of large cylindrical tanks in square-arrangement group. Part 2: CFD simulation and finite element analysis", Wind Struct., 31(6), 495-508.
- Liu, X., Niu, J. and Kwok, K.C.S. (2013), "Evaluation of RANS turbulence models for simulating wind-induced mean pressures and dispersions around a complex-shaped high-rise building", Build. Simul., 6, 151-164. https://doi.org/10.1007/s12273-012-0097-0.
- Liu, Zhenqing, Diao, Z. and Ishihara, T. (2019), "Study of the flow fields over simplified topographies with different roughness conditions using large eddy simulations", Renew. Energy, 136, 968-992. https://doi.org/10.1016/j.renene.2019.01.032.
- Liu, Zhixiang, Yu, Z., Chen, X., Cao, R. and Zhu, F. (2020), "An investigation on external airflow around low-rise building with various roof types: PIV measurements and LES simulations", Build. Environ., 169, 106583. https://doi.org/10.1016/j.buildenv.2019.106583.
- Long, F. (2004), Uncertainties in pressure coefficients derived from full and model scale data, Masters Dessertation, Texas Tech UniversityTexas Tech University. https://doi.org/https://ttu-ir.tdl.org/handle/2346/15683?locale-attribute=de
- Mittal, R. and Moin, P. (1997), "Suitability of upwind-biased finite difference schemes for large-Eddy simulation of turbulent flows", AIAA J., 35(8), 2746-2757. https://doi.org/10.2514/2.253.
- Murakami, S., Mochida, A. and Hayashi, Y. (1990), "Examining the κ-ϵ model by means of a wind tunnel test and large-eddy simulation of the turbulence structure around a cube", J. Wind Eng. Ind. Aerod., 35, 87-100. https://doi.org/10.1016/0167-6105(90)90211-T.
- Murray, J. (2022), "Four Years Later: USACE and Tyndall AFB Continues Partnership in Base Rebuild.,"
- Nozawa, K. and Tamura, T. (2002), "Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layer", J. Wind Eng. Ind. Aerod., 90(10), 1151-1162. https://doi.org/10.1016/S0167-6105(02)00228-3.
- Ong, R.H., Patruno, L., Yeo, D., He, Y. and Kwok, K.C.S. (2020), "Numerical simulation of wind-induced mean and peak pressures around a low-rise structure", Eng. Struct., 214, 110583. https://doi.org/10.1016/j.engstruct.2020.110583
- Peng, Y., Zhao, W. and Ai, X. (2019), "Field measurement and CFD simulation of wind pressures on rectangular attic", Wind Struct., 29(6), 471-488. https://doi.org/10.12989/WAS.2019.29.6.471
- Richards, P. . and Hoxey, R.P. (2002), "Unsteady flow on the sides of a 6m cube", J. Wind Eng. Ind. Aerod., 90(12-15), 1855-1866. https://doi.org/10.1016/S0167-6105(02)00293-3.
- Richards, P.J. and Hoxey, R.P. (2006), "Flow reattachment on the roof of a 6 m cube", J. Wind Eng. Ind. Aerod., 94(2), 77-99. https://doi.org/10.1016/j.jweia.2005.12.002.
- Richards, P.J. and Hoxey, R.P. (2012a), "Pressures on a cubic building-Part 1: Full-scale results", J. Wind Eng. Ind. Aerod., 102, 72-86. https://doi.org/10.1016/j.jweia.2011.11.004.
- Richards, P.J. and Hoxey, R.P. (2012b), "Pressures on a cubic building-Part 2: Quasi-steady and other processes", J. Wind Eng. Ind. Aerod., 102, 87-96. https://doi.org/10.1016/j.jweia.2011.11.003.
- Richards, P.J. and Norris, S.E. (2011), "Appropriate boundary conditions for computational wind engineering models revisited", J. Wind Eng. Ind. Aerod., 99(4), 257-266. https://doi.org/10.1016/j.jweia.2010.12.008.
- Richards, P.J and Hoxey, R.P. (2008), "Wind loads on the roof of a 6 m cube", 96, 984-993. https://doi.org/10.1016/j.jweia.2007.06.032.
- Richards, Peter J. and Hoxey, R.P. (2004), "Quasi-steady theory and point pressures on a cubic building". J. Wind Eng. Ind. Aerod., 92(14-15), 1173-1190. https://doi.org/10.1016/j.jweia.2004.07.003.
- Sadek, F. and Simiu, E. (2002), "Peak Non-Gaussian wind effects for database-assisted low-rise building design", J. Eng. Mech., 128(5), 530-539. https://doi.org/10.1061/(asce)0733-9399(2002)128:5(530).
- Sengupta, A.R., Biswas, A. and Gupta, R. (2021), "Aerodynamic analysis of cambered blade H-Darrieus rotor in low wind velocity using CFD", Wind Struct., 33(6), 471-480.
- Smith, D., Mehta, K. and Morse, S. (2018), "Wind Engineering Research Field Laboratory Selected Data Sets for Comparison to Model-Scale, Full-Scale and Computational Fluid Dynamics Simulations", Wind Eng. Res. F. Lab. Sel. Data Sets Comp. to Model. Full-Scale Comput. Fluid. Des. Dyn. Simulations. 10.17603/DS24D68
- Tamura, T. (2008), "Towards practical use of LES in wind engineering", J. Wind Eng. Ind. Aerod., 96(10-11), 1451-1471. https://doi.org/10.1016/j.jweia.2008.02.034.
- Tieleman, H.W. (2003), "Wind tunnel simulation of wind loading on low-rise structures: A review", J. Wind Eng. Ind. Aerod., 91(12-15), 1627-1649. https://doi.org/10.1016/j.jweia.2003.09.021.
- Tokyo Polytechnic University (2007), Aerodynamic Database for Low-Rise Buildings, https://doi.org/http://wind.arch.tkougei.ac.jp/system/eng/contents/code/tpu.
- Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M. and Shirasawa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Ind. Aerod., 96(10), 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058.
- Verma, A. and Mahesh, K. (2012), "A Lagrangian subgrid-scale model with dynamic estimation of Lagrangian time scale for large eddy simulation of complex flows", Phys. Fluids, 24(8), 085101. https://doi.org/10.1063/1.4737656.
- Wang, X., Li, Q. and Li, J. (2020), "Field monitoring and wind tunnel study of wind effects on roof overhang of a low-rise building", Struct. Control Heal. Monit., 27(3). https://doi.org/10.1002/stc.2484.
- Wright, N.G. and Easom, G.J. (2003), "Non-linear k-ε turbulence model results for flow over a building at full-scale", Appl. Math. Model., 27(12), 1013-1033. https://doi.org/10.1016/S0307-904X(03)00123-9.
- Xing, F., Mohotti, D. and Chauhan, K. (2018), "Study on localised wind pressure development in gable roof buildings having different roof pitches with experiments, RANS and LES simulation models", Build. Environ., 143, 240-257. https://doi.org/10.1016/j.buildenv.2018.07.026.
- Xu, M., Patruno, L., Lo, Y.-L., de Miranda, S. and Ubertini, F. (2022), "On the numerical simulation of perforated bluff-bodies: a cfd study on a hollow porous 5: 1 rectangular cylinder", Wind Struct., 34(1), 1-14.
- Xu, Y.L. (1995), "Model- and full-scale comparison of fatiguerelated characteristics of wind pressures on the Texas Tech Building", J. Wind Eng. Ind. Aerod., 58(3), 147-173. https://doi.org/10.1016/0167-6105(95)00012-7.
- You, D., Ham, F. and Moin, P. (2008), "Discrete conservation principles in large-eddy simulation with application to separation control over an airfoil", Phys. Fluids, 20(10), https://doi.org/101515. 10.1063/1.3006077.