DOI QR코드

DOI QR Code

Blast Performance Evaluation based on Finite Element Analysis for Reinforced Concrete Columns with Shear and Flexure Failure Modes

유한요소해석 기반 휨 및 전단 파괴형 철근콘크리트 기둥의 폭발 성능평가

  • Ye-Eun Kim (Department of Architectural Engineering, Gyeongsang National University) ;
  • Quoc To Bao (Department of Architectural Engineering, Sejong University) ;
  • Kihak Lee (Department of Architectural Engineering, Sejong University) ;
  • Jiuk Shin (Department of Architectural Engineering, Gyeongsang National University)
  • 김예은 (경상국립대학교 건축공학과) ;
  • ;
  • 이기학 (세종대학교 건축공학과 ) ;
  • 신지욱 (경상국립대학교 건축공학과 )
  • Received : 2023.06.23
  • Accepted : 2023.08.29
  • Published : 2023.10.31

Abstract

This study aims to evaluate the blast performance of shear and flexure failure modes of reinforced concrete columns using finite-element analyses. To accomplish this goal, finite-element models of flexure- and shear-governed columns were developed and validated using previous experimental results. A blast simulation model was developed using a coupling-modeling method, and the modeling method was applied to the validated-column models. Blast responses were obtained for various blast loading scenarios, and the blast performance was determined using limits based on ductility and axial loading capacity.

본 논문에서는 유한요소해석 프로그램을 통해 파괴 거동 유형별 철근콘크리트 기둥 및 폭발 하중을 모델링하였으며, 실제 실험과의 동적 응답을 비교하여 모델의 적합성을 입증하였다. 개발한 모델을 이용하여 폭발 하중에 대한 부재의 동적 응답을 확인하기 위해 폭발 하중 시나리오를 설정하였으며 해당 시나리오별 폭발 하중에 대한 시간에 따른 변위 및 응력 결과를 도출하였다. 동적 응답을 통해 폭발 하중에 대한 기둥의 성능평가(Ductility, Residual)를 수행하였으며 이를 비교 및 분석하였다.

Keywords

Acknowledgement

본 연구는 행정안전부 국립재난안전연구원 재난안전 공동연구 기술개발사업의 지원(2022-MOIS63-003(RS-2022-ND641021)) 및 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(NRF-2021R1F1A1059976)을 받아 수행되었습니다. 이에 감사드립니다.

References

  1. ACI Committee 318 (2019) Building Code Requirements for Structural Concrete, American Concrete Institute.
  2. ASCE(American Society of Civil Engineers) (2011) Blast Protection of Buildings, ASCE 59-11, p.10
  3. Corley, W.G., Sozen, M.A., Thornton, C.H., Mlakar, P.F. (1996) The Oklahoma City Bombing: Improving Building Performance through Multi-hazard Mitigation (Report No. FEMA-277), USA : Federal Emergency Management Agency (FEMA). Retrieved from https://www.fema.gov/sites/default/files/documents/fema_277_ok-city-bombing-report_1996.pdf
  4. Crawford, J.E., Malvar, L.J., Wesevich, J.W., Valancius, J., Reynolds, A.D. (1997) Retrofit of Reinforced Concrete Structures to Resist Blast Effects, ACI Struct. J., 94(4), pp.371~377.
  5. Crawford, J.E., Wu, Y., Choi, H.J., Magallanes, J.M., Lan, S. (2012) Use and Validation of the Release III K&C Concrete Material Model in LS-DYNA (Report No. TR-11-36.6). USA: Karagozian & Case, Glendale.
  6. Hallquist, J. (2007) LS-DYNA Keyword User's Manual, Livermore Software Technology Corporation, Livermore, CA (US).
  7. Han, Y., Liu, H. (2015) Finite Element Simulation of Medium-Range Blast Loading Using LS-DYNA, Shock & Vibr., 2015, pp.1~9. https://doi.org/10.1155/2015/631493
  8. Kim, Y., Kim, H., Shin, J. (2022) Bond-slip Effect of Reinforced Concrete Building Structure under Seismic Load using Finite Element Analysis, J. Korean Assoc. Spat. Struct., 22(4), pp. 99~107. https://doi.org/10.9712/KASS.2022.22.4.99
  9. Livermore Software Technology Corporation (LSTC) (2013) LS-DYNA Keyword User's Manual Version 971/R7.0, Livermore, CA (US).
  10. MacGregor JGG (1996) Reinforced Concrete: Mechanics and Design, Professional Technical Reference, Englewood Cliffs, NJ: Prentice-Hall.
  11. Malvar, L.J., Crawford, J.E. (1998) Dynamic Increase Factors for Steel Reinforcing Bars, Proc. 28th DDESB Seminar, USA.
  12. Mo, Y.L., Wang, S.J. (2000) Seismic Behavior of RC Columns with Various Tie Configurations, J. Struct. Eng., 126(10), pp.1122~1130. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1122)
  13. Olovsson, L., Souli, M. (2000) ALE and Fluid-Structure Interaction Capabilities in LS-DYNA, Proc. 6th Int. LS-DYNA Conf., USA.
  14. Shi, Y., Hao, H., Li, Z.X. (2007) Numerical Derivation of Pressure-Impulse Diagrams for Prediction of RC Column Damage to Blast Loads, Int. J. Impact Eng., 35(11), pp.1213~1227.
  15. Shin, J. (2021) Numerical Model of FRP Jacketed RC Column Under Blast Loading Scenario, Spat. Struct., 21(2), pp.67~79.
  16. Slavik, T.P. (2009) A Coupling of Empirical Explosive Blast Loads to ALE Air Domains in LS-DYNA, IOP Conf. Series: Mater. Sci. & Eng., Austria, pp.1~10.
  17. US Department of Defense (DoD) (2008) Structures to Resist the Effects of Accidental Explosions, US DoD, Washington DC, USA, UFC-3-340-02.
  18. Woodson, S.C., Baylot, J.T. (1999) Structural Collapse: Quarter-Scale Model Experiments (Report No. SL-99-8). USA: US Army Engineer Research and Development Center.