DOI QR코드

DOI QR Code

Changes in the Components of Astragalus membranaceus Fermented by Korean Traditional Nuruk

전통 누룩을 이용한 발효황기의 성분 변화

  • 강민혜 (농촌진흥청 국립원예특작과학원 인삼특작부) ;
  • 이은숙 (농촌진흥청 국립원예특작과학원 인삼특작부) ;
  • 지윤정 (농촌진흥청 국립원예특작과학원 인삼특작부) ;
  • 김형돈 (농촌진흥청 국립원예특작과학원 인삼특작부) ;
  • 김금숙 (농촌진흥청 국립원예특작과학원 인삼특작부) ;
  • 최수지 (농촌진흥청 국립원예특작과학원 인삼특작부) ;
  • 장귀영 (농촌진흥청 국립원예특작과학원 인삼특작부)
  • Received : 2023.09.01
  • Accepted : 2023.09.19
  • Published : 2023.10.31

Abstract

The major active components of Astragalus membranaceus (AM) are isoflavones, which exist in the form of various glycosides. Nuruk is a traditional fermentation starter in Korea, and is suitable for the biotransformation of isoflavone glycosides because it contains various microorganisms and enzymes. This study was performed to determine changes in the isoflavones and antioxidant properties of AM fermented (AF) with nuruk over 24 hours. AF was sampled after 0, 2, 4, 6, 12, 18, and 24 h of fermentation, and calycosin 7-glucoside, ononin, calycosin, and formononetin content, and the antioxidant properties of AF were analyzed. The total phenolic content increased with fermentation time, and the ABTS radical scavenging activity increased until 6 h of fermentation and then decreased. During fermentation, the isoflavone glycosides decreased significantly as fermentation time increased. The contents of calycosin and formononetin, which are aglycons of calycosin-7-glucoside and ononin, increased from 100.54 ㎍/g to 276.84 ㎍/g and from 56.29 ㎍/g to 123.04 ㎍/g, respectively, at 18 h of fermentation. Significant correlations were observed between fermentation time, isoflavone content, and antioxidant properties. The results of this study showed that fermentation with nuruk is suitable for the biotransformation of isoflavones in AM.

Keywords

Acknowledgement

본 연구는 농촌진흥청 원예특작시험연구사업의 지원에 의해 수행된 연구과제(과제번호: PJ01669401)의 일부 결과이며, 이에 감사드립니다.

References

  1. Cao H, Chen X, Jassbi AR, Xiao J. 2015. Microbial biotransformation of bioactive flavonoids. Biotechnol Adv33:214-223 https://doi.org/10.1016/j.biotechadv.2014.10.012
  2. Chen Y, Shan S, Cao D, Tang D. 2020. Steam flash explosion pretreatment enhances soybean seed coat phenolic profiles and antioxidant activity. Food Chem 319:126552
  3. Chu SC, Chen C. 2006. Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chem 98:502-507 https://doi.org/10.1016/j.foodchem.2005.05.080
  4. Dewanto V, Wu X, Adom KK, Liu RH. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010-3014 https://doi.org/10.1021/jf0115589
  5. Gu Q, Duan G, Yu X. 2019. Bioconversion of flavonoid glycosides from Hippophae rhamnoides leaves into flavonoid aglycones by Eurotium amstelodami. Microorganisms 7:122
  6. Guo R, Guo S, Gao X, Wang H, Hu W, Duan R, Dong TTX, Tsim KWK. 2020. Fermentation of Danggui Buxue Tang, an ancient Chinese herbal mixture, together with Lactobacillus plantarum enhances the anti-diabetic functions of herbal product. Chin Med 15:98
  7. Haslam E. 2003. Thoughts on thearubigins. Phytochemistry 64:61-73 https://doi.org/10.1016/S0031-9422(03)00355-8
  8. Hirotani M, Zhou Y, Furuya HR. 1994. Cycloartane triterpene glycosides from the hairy root cultures of Astragalus membranaceus. Phytochemistry 37:1403-1407 https://doi.org/10.1016/S0031-9422(00)90420-5
  9. Huh JE, Seo DM, Baek YH, Choi DY, Park DS, Lee JD. 2010. Biphasic positive effect of formononetin on metabolic activity of human normal and osteoarthritic subchondral osteoblasts. Int Immunopharmacol 10:500-507 https://doi.org/10.1016/j.intimp.2010.01.012
  10. Jiao J, Gai QY, Niu LL, Wang XQ, Guo N, Zang YP, Fu YJ. 2017. Enhanced production of two bioactive isoflavone aglycones in Astragalus membranaceus hairy root cultures by combining deglycosylation and elicitation of immobilized edible Aspergillus niger. J Agric Food Chem 65:9078-9086 https://doi.org/10.1021/acs.jafc.7b03148
  11. Jung HS, Lee EJ, Lee JH, Kim JS, Kang SS. 2008. Phytochemical studies on Astragalus root (3): Triterpenoids and sterols. Korean J Pharmacogn 39:186-193
  12. Kawakami Y, Tsurugasaki W, Nakamura S, Osada K. 2005. Comparison of regulative functions between dietary soy isoflavones aglycone and glucoside on lipid metabolism in rats fed cholesterol. J Nutr Biochem 16:205-212 https://doi.org/10.1016/j.jnutbio.2004.11.005
  13. Kim MJ, Lim KR, Jung TK, Yoon KS. 2007. Anti-aging effect of Astragalus membranaceus root extract. J Soc Cosmet Sci Korea 33:33-40
  14. Lee HY, Ha HK, Jung DY, Choi JY, Lee NH, Ma JY, Yu YB, Shin HK. 2008. Study on pharmacological activity of sipjeondaebotang by difference in component ratio between Astragali radix and Cinnamomi cortex. J Korean Oriental Med 29:156-166
  15. Lee JY, Park HM, Kang CH. 2022. Antioxidant effect via bioconversion of isoflavonoid in Astragalus membranaceus fermented by Lactiplantibacillus plantarum MG5276 in vitro and in vivo. Fermentation 8:34
  16. Li Y, Guo S, Zhu Y, Yan H, Qian DW, Wang HQ, Yu JQ, Duan JA. 2019. Comparative analysis of twenty-five compounds in different parts of Astragalus membranaceus var. mongholicusand Astragalus membranaceus by UPLC-MS/MS. J Pharm Anal 9:392-399 https://doi.org/10.1016/j.jpha.2019.06.002
  17. Luk'yanchikov MS. 1984. Quantitative determination of flavonoids in some representatives of the family Fabaceae. Chem Nat Compd 20:40-41 https://doi.org/10.1007/BF00574787
  18. Luo L, Zhou J, Zhao H, Fan M, Gao W. 2019. The anti-inflammatory effects of formononetin and ononin on lipopolysaccharide-induced zebrafish models based on lipidomics and targeted transcriptomics. Metabolomics15:153
  19. Park HM, Lee JY, Kim MY, Kang CH, Hwang HS. 2021. Anti-oxidative and anti-inflammatory activities of Astragalus membranaceus fermented by Lactiplantibacillus plantarumon LPS-induced RAW 264.7 cells. Fermentation 7:252
  20. Park JY, Lee JY, Kim HD, Jang GY, Seo KH. 2019. Changes in the constituents and UV-photoprotective activity of Astragalus membranaceus caused by roasting. J Nutr Health 52:413-421 https://doi.org/10.4163/jnh.2019.52.5.413
  21. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evance C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  22. So MH. 1993. Conditions for the production of amylase and protease in making wheat flour nuruk by Aspergillus oryzaeL2. Korean J Food Nutr 6:89-95
  23. So MH. 1999. Characteristics of a modified nuruk made by inoculation of traditional nuruk microorganisms. Korean J Food Nutr 12:219-225
  24. Song BN, Lee DB, Lee SH, Park BR, Choi JH, Kim YS, Park SY. 2020. Physicochemical properties and antioxidant activity of extract from Astragalus membranaceus Bunge leaf fermented with lactic acid bacteria. Korean J Med Crop Sci 28:428-434 https://doi.org/10.7783/KJMCS.2020.28.6.428
  25. Song CQ, Zheng ZR, Liu D, Hu ZB. 1997. Isoflavones from Astragalus membranaceus. Acta Bot Sin. 39:764-768
  26. Subarnas A, Oshima Y, Hikino H. 1991. Isoflavans and a pterocarpan from Astragalus mongholicus. Phytochemistry30:2777-2780
  27. Tang D, He B, Zheng ZG, Wang RS, Gu F, Duan TT, Cheng HQ, Zhu Q. 2011. Inhibitory effects of two major isoflavonoids in radix Astragali on high glucose-induced mesangial cells proliferation and AGEs-induced endothelial cells apoptosis. Planta Med 77:729-732 https://doi.org/10.1055/s-0030-1250628
  28. Wang Y, Gong Y, Xiao Y, Jiang Y, Chen J, Zhao H, Qi M, Chen H, Fan J, Wang J. 2023. Study on the dynamic metabolic characteristic of main active ingredients in Danggui Buxue Decoction by liquid chromatography-tandem mass spectrometry based on in situ sequential metabolism strategy. J Sep Sci 46:2200941
  29. Yu D, Duan Y, Bao Y, Wei C, An L. 2005. Isoflavonoids from Astragalus mongholicus protect PC12 cells from toxicity induced by L-glutamate. J Ethnopharmacol 98:89-94 https://doi.org/10.1016/j.jep.2004.12.027