DOI QR코드

DOI QR Code

Tumor suppressor Parkin induces p53-mediated cell cycle arrest in human lung and colorectal cancer cells

  • Byung Chul Jung (Department of Nutritional Sciences and Toxicology, University of California ) ;
  • Sung Hoon Kim (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University) ;
  • Yoonjung Cho (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University) ;
  • Yoon Suk Kim (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University)
  • Received : 2023.07.26
  • Accepted : 2023.08.28
  • Published : 2023.10.31

Abstract

Dysregulation of the E3 ubiquitin ligase Parkin has been linked to various human cancers, indicating that Parkin is a tumor suppressor protein. However, the mechanisms of action of Parkin remain unclear to date. Thus, we aimed to elucidate the mechanisms of action of Parkin as a tumor suppressor in human lung and colorectal cancer cells. Results showed that Parkin overexpression reduced the viability of A549 human lung cancer cells by inducing G2/M cell cycle arrest. In addition, Parkin caused DNA damage and ATM (Ataxia telangiectasia mutated) activation, which subsequently led to p53 activation. It also induced the p53-mediated upregulation of p21 and downregulation of cyclin B1. Moreover, Parkin suppressed the proliferation of HCT-15 human colorectal cancer cells by a mechanism similar to that in A549 lung cancer cells. Taken together, our results suggest that the tumor-suppressive effects of Parkin on lung and colorectal cancer cells are mediated by DNA damage/p53 activation/cyclin B1 reduction/cell cycle arrest.

Keywords

References

  1. Kitada T, Asakawa S, Hattori N et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605-608  https://doi.org/10.1038/33416
  2. Klein C and Westenberger A (2012) Genetics of Parkinson's disease. Cold Spring Harb Perspect Med 2, a008888 
  3. Lee K, Lee MH, Kang YW, Rhee KJ, Kim TU and Kim YS (2012) Parkin induces apoptotic cell death in TNF-alpha-treated cervical cancer cells. BMB Rep 45, 526-531  https://doi.org/10.5483/BMBRep.2012.45.9.104
  4. Zhang Y, Gao J, Chung KK, Huang H, Dawson VL and Dawson TM (2000) Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A 97, 13354-13359  https://doi.org/10.1073/pnas.240347797
  5. Shin WH and Chung KC (2022) Tollip negatively regulates mitophagy by promoting the mitochondrial processing and cytoplasmic release of PINK1. BMB Rep 55, 494-499  https://doi.org/10.5483/BMBRep.2022.55.10.082
  6. Park GH, Park JH and Chung KC (2021) Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease. BMB Rep 54, 592-600  https://doi.org/10.5483/BMBRep.2021.54.12.107
  7. Giasson BI and Lee VM (2001) Parkin and the molecular pathways of Parkinson's disease. Neuron 31, 885-888  https://doi.org/10.1016/S0896-6273(01)00439-1
  8. Palumbo E, Matricardi L, Tosoni E, Bensimon A and Russo A (2010) Replication dynamics at common fragile site FRA6E. Chromosoma 119, 575-587  https://doi.org/10.1007/s00412-010-0279-4
  9. Veeriah S, Taylor BS, Meng S et al (2010) Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet 42, 77-82  https://doi.org/10.1038/ng.491
  10. Duan H, Lei Z, Xu F et al (2019) PARK2 suppresses proliferation and tumorigenicity in non-small cell lung cancer. Front Oncol 9, 790 
  11. Liu J, Zhang C, Hu W and Feng Z (2018) Parkinson's disease-associated protein Parkin: an unusual player in cancer. Cancer Commun (Lond) 38, 40 
  12. Aryal B and Lee Y (2019) Disease model organism for Parkinson disease: Drosophila melanogaster. BMB Rep 52, 250-258  https://doi.org/10.5483/BMBRep.2019.52.4.204
  13. Carroll RG, Hollville E and Martin SJ (2014) Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. Cell Rep 9, 1538-1553  https://doi.org/10.1016/j.celrep.2014.10.046
  14. Lee SB, Kim JJ, Nam HJ et al (2015) Parkin regulates mitosis and genomic stability through Cdc20/Cdh1. Mol Cell 60, 21-34  https://doi.org/10.1016/j.molcel.2015.08.011
  15. Liu J, Zhang C, Wu H et al (2020) Parkin ubiquitinates phosphoglycerate dehydrogenase to suppress serine synthesis and tumor progression. J Clin Invest 130, 3253-3269  https://doi.org/10.1172/JCI132876
  16. Wang H, Liu B, Zhang C et al (2009) Parkin regulates paclitaxel sensitivity in breast cancer via a microtubule-dependent mechanism. J Pathol 218, 76-85  https://doi.org/10.1002/path.2512
  17. Wang TH, Wang HS and Soong YK (2000) Paclitaxelinduced cell death: where the cell cycle and apoptosis come together. Cancer 88, 2619-2628  https://doi.org/10.1002/1097-0142(20000601)88:11<2619::AID-CNCR26>3.0.CO;2-J
  18. Poulogiannis G, McIntyre RE, Dimitriadi M et al (2010) PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc Natl Acad Sci U S A 107, 15145-15150  https://doi.org/10.1073/pnas.1009941107
  19. Bieging KT, Mello SS and Attardi LD (2014) Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 14, 359-370  https://doi.org/10.1038/nrc3711
  20. Barnum KJ and O'Connell MJ (2014) Cell cycle regulation by checkpoints. Methods Mol Biol 1170, 29-40  https://doi.org/10.1007/978-1-4939-0888-2_2
  21. Horn HF and Vousden KH (2007) Coping with stress: multiple ways to activate p53. Oncogene 26, 1306-1316  https://doi.org/10.1038/sj.onc.1210263
  22. Chen J (2016) The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med 6, a026104 
  23. Feroz W and Sheikh AMA (2020) Exploring the multiple roles of guardian of the genome: P53. Egyptian Journal of Medical Human Genetics 21, 49 
  24. Karimian A, Ahmadi Y and Yousefi B (2016) Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst) 42, 63-71  https://doi.org/10.1016/j.dnarep.2016.04.008
  25. Innocente SA, Abrahamson JL, Cogswell JP and Lee JM (1999) p53 regulates a G2 checkpoint through cyclin B1. Proc Natl Acad Sci U S A 96, 2147-2152  https://doi.org/10.1073/pnas.96.5.2147
  26. Collins K, Jacks T and Pavletich NP (1997) The cell cycle and cancer. Proc Natl Acad Sci U S A 94, 2776-2778  https://doi.org/10.1073/pnas.94.7.2776
  27. Agarwal ML, Agarwal A, Taylor WR and Stark GR (1995) p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci U S A 92, 8493-8497  https://doi.org/10.1073/pnas.92.18.8493
  28. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2, 401-404  https://doi.org/10.1158/2159-8290.CD-12-0095
  29. Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6, pl1 
  30. Davy C and Doorbar J (2007) G2/M cell cycle arrest in the life cycle of viruses. Virology 368, 219-226  https://doi.org/10.1016/j.virol.2007.05.043
  31. Kurtman C, Oztatlici M, ucoz M, Karakoyun Celik O, Sokur I and Kemal Ozbilgin M (2022) Mitophagy in the A549 lung cancer cell line, radiation-induced damage, and the effect of ATM and PARKIN on the mitochondria. Int J Radiat Res 20, 9-13  https://doi.org/10.52547/ijrr.20.1.2
  32. Williams AB and Schumacher B (2016) p53 in the DNA-Damage-Repair Process. Cold Spring Harb Perspect Med 6, a026070 
  33. Lakin ND and Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene 18, 7644-7655  https://doi.org/10.1038/sj.onc.1203015
  34. Kao SY (2009) DNA damage induces nuclear translocation of parkin. J Biomed Sci 16, 67 
  35. Rothfuss O, Fischer H, Hasegawa T et al (2009) Parkin protects mitochondrial genome integrity and supports mitochondrial DNA repair. Hum Mol Genet 18, 3832-3850  https://doi.org/10.1093/hmg/ddp327
  36. Engeland K (2022) Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ 29, 946-960  https://doi.org/10.1038/s41418-022-00988-z
  37. Badie C, Bourhis J, Sobczak-Thepot J et al (2000) p53-dependent G2 arrest associated with a decrease in cyclins A2 and B1 levels in a human carcinoma cell line. Br J Cancer 82, 642-650  https://doi.org/10.1054/bjoc.1999.0976
  38. Pan Z, Zhang X, Yu P et al (2019) Cinobufagin induces cell cycle arrest at the G2/M phase and promotes apoptosis in malignant melanoma cells. Front Oncol 9, 853 
  39. Ujiki MB, Ding XZ, Salabat MR et al (2006) Apigenin inhibits pancreatic cancer cell proliferation through G2/M cell cycle arrest. Mol Cancer 5, 76 
  40. Kim HS, Song IH, Kim JC, Kim EJ, Jang DO and Park YS (2006) In vitro and in vivo gene-transferring characteristics of novel cationic lipids, DMKD (O,O'-dimyristyl-N-lysyl aspartate) and DMKE (O,O'-dimyristyl-N-lysyl glutamate). J Control Release 115, 234-241  https://doi.org/10.1016/j.jconrel.2006.08.003
  41. Jung BC, Kim HK, Kim SH and Kim YS (2023) Triglyceride induces DNA damage leading to monocyte death by activating caspase-2 and caspase-8. BMB Rep 56, 166-171 https://doi.org/10.5483/BMBRep.2022-0201