과제정보
This work was supported by the Cooperative Research Program for Agricultural Science & Technology Development (Project No. PJ01492602), Rural Development Administration, Republic of Korea. And this work is further supported by the Development of next-generation biorefinery platform technologies for leading bio-based chemicals industry project (2022M3J5A1056072) and by Development of platform technologies of microbial cell factories for the next-generation biorefineries project (2022M3J5A1056117) from National Research Foundation supported by the Korean Ministry of Science and ICT.
참고문헌
- Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, et al. 2003. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol. 104: 5-25. https://doi.org/10.1016/S0168-1656(03)00154-8
- Becker J, Giesselmann G, Hoffmann SL, Wittmann C. 2018. Corynebacterium glutamicum for sustainable bioproduction: from metabolic physiology to systems metabolic engineering. Adv. Biochem. Eng. Biotechnol. 162: 217-263. https://doi.org/10.1007/10_2016_21
- Lee JY, Na YA, Kim E, Lee HS, Kim P. 2016. The Actinobacterium Corynebacterium glutamicum, an industrial workhorse. J. Microbiol. Biotechnol. 26: 807-822. https://doi.org/10.4014/jmb.1601.01053
- Eikmanns BJ, Eggeling L, Sahm H. 1993. Molecular aspects of lysine, threonine, and isoleucine biosynthesis in Corynebacterium glutamicum. Antonie Van Leeuwenhoek. 64: 145-163. https://doi.org/10.1007/BF00873024
- Baumgart M, Unthan S, Ruckert C, Sivalingam J, Grunberger A, Kalinowski J, et al. 2013. Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. Appl. Environ. Microbiol. 79: 6006-6015. https://doi.org/10.1128/AEM.01634-13
- Xu JZ, Yang HK, Zhang WG. 2018. NADPH metabolism: a survey of its theoretical characteristics and manipulation strategies in amino acid biosynthesis. Crit. Rev. Biotechnol. 38: 1061-1076. https://doi.org/10.1080/07388551.2018.1437387
- Takeno S, Hori K, Ohtani S, Mimura A, Mitsuhashi S, Ikeda M. 2016. l-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene. Metab. Eng. 37: 1-10. https://doi.org/10.1016/j.ymben.2016.03.007
- Sheng Q, Wu XY, Xu X, Tan X, Li Z, Zhang B. 2021. Production of l-glutamate family amino acids in Corynebacterium glutamicum: physiological mechanism, genetic modulation, and prospects. Synth. Syst. Biotechnol. 6: 302-325. https://doi.org/10.1016/j.synbio.2021.09.005
- Ma YC, Ma Q, Cui Y, Du LH, Xie XX, Chen N. 2019. Transcriptomic and metabolomics analyses reveal metabolic characteristics of L-leucine- and L-valine-producing Corynebacterium glutamicum mutants. Ann. Microbiol. 69: 457-468. https://doi.org/10.1007/s13213-018-1431-2
- Ma WJ, Wang JL, Li Y, Hu XQ, Shi F, Wang XY. 2016. Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve L-isoleucine production. Biotechnol. Appl. Biochem. 63: 877-885. https://doi.org/10.1002/bab.1442
- Pfefferle W, Mockel B, Bathe B, Marx A. 2003. Biotechnological manufacture of lysine. Adv. Biochem. Eng. Biotechnol. 79: 59-112. https://doi.org/10.1007/3-540-45989-8_3
- Kimura E. 2003. Metabolic engineering of glutamate production. Adv. Biochem. Eng. Biotechnol. 79: 37-57. https://doi.org/10.1007/3-540-45989-8_2
- Ikeda M. 2003. Amino acid production processes. Adv. Biochem. Eng. Biotechnol. 79: 1-35. https://doi.org/10.1007/3-540-45989-8_1
- Schnarrenberger C, Flechner A, Martin W. 1995. Enzymatic evidence for a complete oxidative pentose phosphate pathway in chloroplasts and an incomplete pathway in the cytosol of spinach leaves. Plant Physiol. 108: 609-614. https://doi.org/10.1104/pp.108.2.609
- Xia W, Wang Z, Wang Q, Han J, Zhao C, Hong Y, et al. 2009. Roles of NAD(+) / NADH and NADP(+) / NADPH in cell death. Curr. Pharm. Des. 15: 12-19. https://doi.org/10.2174/138161209787185832
- Park SH, Kim HU, Kim TY, Park JS, Kim SS, Lee SY. 2014. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat. Commun. 5: 4618.
- Chen YY, Ko TP, Chen WH, Lo LP, Lin CH, Wang AH. 2010. Conformational changes associated with cofactor/substrate binding of 6-phosphogluconate dehydrogenase from Escherichia coli and Klebsiella pneumoniae: implications for enzyme mechanism. J. Struct. Biol. 169: 25-35. https://doi.org/10.1016/j.jsb.2009.08.006
- Lin R, Elf S, Shan C, Kang HB, Ji Q, Zhou L, et al. 2015. 6-phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling. Nat. Cell Biol. 17: 1484-1496. https://doi.org/10.1038/ncb3255
- Ruda GF, Alibu VP, Mitsos C, Bidet O, Kaiser M, Brun R, et al. 2007. Synthesis and biological evaluation of phosphate prodrugs of 4-phospho-D-erythronohydroxamic acid, an inhibitor of 6-phosphogluconate dehydrogenase. ChemMedChem. 2: 1169-1180. https://doi.org/10.1002/cmdc.200700040
- Hanau S, Rinaldi E, Dallocchio F, Gilbert IH, Dardonville C, Adams MJ, et al. 2004. 6-phosphogluconate dehydrogenase: a target for drugs in African trypanosomes. Curr. Med. Chem. 11: 2639-2650. https://doi.org/10.2174/0929867043364441
- Park S-Y, Ha S-C, Kim Y-G. 2017. The protein crystallography beamlines at the pohang light source II. Biodesign. 5: 30-34.
- Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
- Matthews BW. 1968. Solvent content of protein crystals. J. Mol. Biol. 33: 491-497. https://doi.org/10.1016/0022-2836(68)90205-2
- Collaborative Computational Project N. 1994. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50: 760-763. https://doi.org/10.1107/S0907444994003112
- Vagin A, Teplyakov A. 2010. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66: 22-25. https://doi.org/10.1107/S0907444909042589
- Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol. Crystallogr. 60: 2126-2132. https://doi.org/10.1107/S0907444904019158
- Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67: 355-367. https://doi.org/10.1107/S0907444911001314
- Murshudov GN, Vagin AA, Dodson EJ. 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol Crystallogr. 53: 240-255. https://doi.org/10.1107/S0907444996012255
- Sievers F, Higgins DG. 2014. Clustal omega. Curr. Protoc. Bioinformatics 48: 3 13 11-13 13 16. https://doi.org/10.1002/0471250953.bi0313s48
- Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Res. 14: 1188-1190. https://doi.org/10.1101/gr.849004
- Trott O, Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31: 455-461. https://doi.org/10.1002/jcc.21334
- Cameron S, Martini VP, Iulek J, Hunter WN. 2009. Geobacillus stearothermophilus 6-phosphogluconate dehydrogenase complexed with 6-phosphogluconate. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65: 450-454. https://doi.org/10.1107/S1744309109012767
- Rippa M, Giovannini PP, Barrett MP, Dallocchio F, Hanau S. 1998. 6-Phosphogluconate dehydrogenase: the mechanism of action investigated by a comparison of the enzyme from different species. Biochim. Biophys. Acta. 1429: 83-92. https://doi.org/10.1016/S0167-4838(98)00222-2
- Sundaramoorthy R, Iulek J, Barrett MP, Bidet O, Ruda GF, Gilbert IH, et al. 2007. Crystal structures of a bacterial 6-phosphogluconate dehydrogenase reveal aspects of specificity, mechanism and mode of inhibition by analogues of high-energy reaction intermediates. FEBS J. 274: 275-286. https://doi.org/10.1111/j.1742-4658.2006.05585.x
- Adams MJ, Ellis GH, Gover S, Naylor CE, Phillips C. 1994. Crystallographic study of coenzyme, coenzyme analog and substrate-Binding in 6-phosphogluconate dehydrogenase - implications for Nadp specificity and the enzyme mechanism (Vol. 2, Pg 651, 1994). Structure 2: 784-784. https://doi.org/10.1016/S0969-2126(00)00066-6
- Lei Z, Chooback L, Cook PF. 1999. Lysine 183 is the general base in the 6-phosphogluconate dehydrogenase-catalyzed reaction. Biochemistry 38: 11231-11238. https://doi.org/10.1021/bi990433i
- Li L, Dworkowski FSN, Cook PF. 2006. Importance in catalysis of the 6-phosphate-binding site of 6-phosphogluconate in sheep liver 6-phosphogluconate dehydrogenase. J. Biol. Chem. 281: 25568-25576. https://doi.org/10.1074/jbc.M601154200
- Lou D, Wang B, Tan J, Zhu L, Cen X, Ji Q, et al. 2016. The three-dimensional structure of Clostridium absonum 7alpha-hydroxysteroid dehydrogenase: new insights into the conserved arginines for NADP(H) recognition. Sci. Rep. 6: 22885.
- Dambe TR, Kuhn AM, Brossette T, Giffhorn F, Scheidig AJ. 2006. Crystal structure of NADP(H)-dependent 1,5-anhydro-D-fructose reductase from Sinorhizobium morelense at 2.2 A resolution: construction of a NADH-accepting mutant and its application in rare sugar synthesis. Biochemistry 45: 10030-10042. https://doi.org/10.1021/bi052589q
- Kitatani T, Nakamura Y, Wada K, Kinoshita T, Tamoi M, Shigeoka S, et al. 2006. Structure of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Synechococcus PCC7942 complexed with NADP. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62: 315-319. https://doi.org/10.1107/S1744309106007378
- Haeussler K, Fritz-Wolf K, Reichmann M, Rahlfs S, Becker K. 2018. Characterization of Plasmodium falciparum 6-phosphogluconate dehydrogenase as an antimalarial drug target. J. Mol. Biol. 430: 4049-4067. https://doi.org/10.1016/j.jmb.2018.07.030
- Hua YH, Wu CY, Sargsyan K, Lim C. 2014. Sequence-motif detection of NAD(P)-binding proteins: discovery of a unique antibacterial drug target. Sci. Rep. 4: 6471.