DOI QR코드

DOI QR Code

Multilayer Coating with Red Ginseng Dietary Fiber Improves Intestinal Adhesion and Proliferation of Probiotics in Human Intestinal Epithelial Models

  • Ye Seul Son (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Mijin Kwon (Laboratory of Efficacy Research, Korea ginseng Corporation) ;
  • Naeun Son (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Sang-Kyu Kim (Laboratory of Efficacy Research, Korea ginseng Corporation) ;
  • Mi-Young Son (Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2023.05.15
  • Accepted : 2023.06.28
  • Published : 2023.10.28

Abstract

To exert their beneficial effects, it is essential for the commensal bacteria of probiotic supplements to be sufficiently protected as they pass through the low pH environment of the stomach, and effectively colonize the intestinal epithelium downstream. Here, we investigated the effect of a multilayer coating containing red ginseng dietary fiber, on the acid tolerance, and the adhesion and proliferation capacities of three Lactobacillus strains (Limosilactobacillus reuteri KGC1901, Lacticaseibacillus casei KGC1201, Limosilactobacillus fermentum KGC1601) isolated from Panax ginseng, using HT-29 cells, mucin-coated plates, and human pluripotent stem cell-derived intestinal epithelial cells as in vitro models of human gut physiology. We observed that the multilayer-coated strains displayed improved survival rates after passage through gastric juice, as well as high adhesion and proliferation capacities within the various gut epithelial systems tested, compared to their uncoated counterparts. Our findings demonstrated that the multilayer coat effectively protected commensal microbiota and led to improved adhesion and colonization of intestinal epithelial cells, and consequently to higher probiotic efficacy.

Keywords

Acknowledgement

The authors would like to thank the chief of the KGC R&D headquarters, Man-Soo Park, and the division director, Dr. Seung-Ho Lee, for supporting this work.

References

  1. Kwon ML, Lee J, Park S, Kwon OH, Seo J, Roh S. 2020. Exopolysaccharide isolated from Lactobacillus plantarum L-14 has anti-inflammatory effects via the toll-like receptor 4 pathway in LPS-induced RAW 264.7 cells. Int. J. Mol. Sci. 21: 9283. 
  2. Jeon HJY, Kwon S, Shin M, Kim M, Jung SK, YH. 2023. Multilayer coatings containing red ginseng dietary fibre improve the survivability and stability of probiotic bacteria. Institute of Food Technologists. 
  3. Aadil MMANRBSMBPLKQSMUMFMSMZSYRM. 2013. Nutritional and Health Potential of Probiotics: A Review. 11: 11204. 
  4. Dronkers TMG, Ouwehand AC, Rijkers GT. 2020. Global analysis of clinical trials with probiotics. Heliyon 6: e04467. 
  5. Kobayashi SGYSMN. 2018. Therapeutics and immunoprophylaxis against noroviruses and rotaviruses: The past, present, and future. Curr. Drug Metab. 19: 170-191.  https://doi.org/10.2174/1389200218666170912161449
  6. Salman Shirvani-Rad, Ozra Tabatabaei-Malazy, Shahrzad Mohseni, Shirin Hasani-Ranjbar , Ahmad-Reza Soroush, Zahra Hoseini-Tavassol, et al. 2021. Probiotics as a complementary therapy for management of obesity: A systematic review. Evid. Based Complement. Alternat. Med. 2021: 6688450. 
  7. Meng XC, Stanton C, Fitzgerald GF, Daly C. 2007. Anhydrobiotics: The challenges of drying probiotic cultures. Food Chem. 106: 1406-1416.  https://doi.org/10.1016/j.foodchem.2007.04.076
  8. Schutyser JPLBMBFJHKMKRMBMAI. 2013. Dehydration and thermal inactivation of Lactobacillus plantarum WCFS1: Comparing single droplet drying to spray and freeze drying. Food Res. Int. 54: 1351-1359.  https://doi.org/10.1016/j.foodres.2013.09.043
  9. Kim KM, Yang SJ, Kim DS, Lee CW, Kim HY, Lee S, et al. 2020. Probiotic properties and immune-stimulating effect of the Jeju lava seawater mineral-coated probiotics. LWT 126: 109299. 
  10. Mendonca AA, Pinto-Neto WP, da Paixao GA, Santos DDS, De Morais MA, Jr., De Souza RB. 2022. Journey of the probiotic bacteria: Survival of the fittest. Microorganisms 11: 95. 
  11. Qing Liu, Zhiming Yu , Fengwei Tian, Jianxin Zhao, Hao Zhang , Qixiao Zhai, et al. 2020. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb. Cell Fact. 19: 23. 
  12. Elloise du Toit; Satu Vesterlund; Miguel Gueimonde SS. 2013. Assessment of the effect of stress-tolerance acquisition on some basic characteristics of specific probiotics. Int. J. Food Microbiol. 165: 51-56.  https://doi.org/10.1016/j.ijfoodmicro.2013.04.022
  13. Tetsuji Hori, Kazunori Matsuda, Kenji Oishi. 2020. Probiotics: A dietary factor to modulate the gut microbiome, host immune system, and gut-brain interaction. Microorganisms 8: 1401. 
  14. Kwon O, Jung KB, Lee KR, Son YS, Lee H, Kim JJ, et al. 2021. The development of a functional human small intestinal epithelium model for drug absorption. Sci. Adv. 7: eabh1586. 
  15. Yu HY, Kwon M, Lee YS, Lee SH, Kim SK. 2023. Characterization of Limosilactobacillus reuteri KGC1901 newly isolated from Panax ginseng root as a probiotic and its safety assessment. Fermentation 9: 228. 
  16. Lee YS, Yu HY, Kwon M, Lee SH, Park JI, Seo J, et al. 2023. Probiotic characteristics and safety assessment of Lacticaseibacillus casei KGC1201 isolated from Panax ginseng. J. Microbiol. Biotechnol. 33: 519-526. 
  17. Kim H, Lee YS, Yu HY, Kwon M, Kim KK, In G, et al. 2022. Anti-inflammatory effects of Limosilactobacillus fermentum KGC1601 isolated from panax ginseng and its probiotic characteristics. Foods 11: 1707. 
  18. Zuberer DA. 1994. Recovery and enumeration of viable bacteria. Microbiol. Biochem Properties. 5: 119-144.  https://doi.org/10.2136/sssabookser5.2.c8
  19. Jung KB, Lee H, Son YS, Lee MO, Kim YD, Oh SJ, et al. 2018. Interleukin-2 induces the in vitro maturation of human pluripotent stem cell-derived intestinal organoids. Nat. Cmmun. 9: 3039. 
  20. Serigado JM, Foulke-Abel J, Hines WC, Hanson JA, In J, Kovbasnjuk O. 2022. Ulcerative colitis: Novel epithelial insights provided by single cell RNA sequencing. Front. Med (Lausanne) 9: 868508. 
  21. Ghosh JLHDCSD. 2017. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int. J. Pharm. 532: 555-572.  https://doi.org/10.1016/j.ijpharm.2017.09.018
  22. Kwon G, Heo B, Kwon MJ, Kim I, Chu J, Kim BY, et al. 2021. Effect of silk fibroin biomaterial coating on cell viability and intestinal adhesion of probiotic bacteria. J. Microbiol. Biotechnol. 532: 555-572. 
  23. Zheng-Fei Yan, Shuai Yuan, Qin Qin, Jing Wu. 2022. Enhancement of rice protein hydrolysate quality using a novel dual enzyme system. LWT 158: 113110. 
  24. Karina Arellano, Haryung Park, Bobae Kim, Subin Yeo, Hyunjoo Jo, Jin-Hak Kim, et al. 2021. Improving the viability of freeze-dried probiotics using a lysine-based rehydration mixture. Microbiol. Bioterchnol. Lett. 49: 157-166.  https://doi.org/10.48022/mbl.2012.12007
  25. Huang S, Ai ZW, Sun XM, Liu GF, Zhai S, Zhang M, et al. 2016. Influence of arginine on the growth, arginine metabolism and amino acid consumption profiles of Streptococcusthermophilus T1C2 in controlled pH batch fermentations. J. Appl. Microbiol. 123: 746-756.  https://doi.org/10.1111/jam.13221
  26. Laetitia Rodes, Arghya Paul, Michael Coussa-Charley, Hani Al-Salami, Catherine Tomaro-Duchesneau, Marc Fakhoury, et al. 2011. Transit time affects the community stability of Lactobacillus and Bifidobacterium species in an in vitro model of human colonic microbiotia. Artif. Cells Blood Substit. Biotechnol. 39: 351-356.  https://doi.org/10.3109/10731199.2011.622280
  27. Rine Christopher Reuben, Pravas Chandra Roy, Shovon Lal Sarkar, Rubayet-Ul Alam, Iqbal Kabir Jahid. 2019. Isolation, characterization, and assessment of lactic acid bacteria toward their selection as poultry probiotics. BMC Microbiol. 19: 253. 
  28. Warnakulasuriya MADB Fernando, Steve Flint, Charles S Brennan, Kamburawala KDS Ranaweera, Arthur Bamunuarach. 2012. The influence of environmental factors on the adhesion of combinations of probiotics to rice fibre fractions. World J. Microbiol. Biotechnol. 28: 2293-2302.  https://doi.org/10.1007/s11274-012-1035-0
  29. Yu HY, Rhim DB, Kim SK, Ban OH, Oh SK, Seo J, et al. 2023. Growth promotion effect of red ginseng dietary fiber to probiotics and transcriptome analysis of Lactiplantibacillus plantarum. J. Ginseng Res. 47: 159-165.  https://doi.org/10.1016/j.jgr.2022.09.003
  30. Chongde Wu, Juan Zhang, Wei Chen, Miao Wang, Guocheng Du, Jian Chen. 2018. Mechanisms and improvement of acid resistance in lactic acid bacteria. Arch. Microbiol. 200: 195-201.  https://doi.org/10.1007/s00203-017-1446-2
  31. Chao Wang, Yanhua Cui, Xiaojun Qu. 2012. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance. Appl. Microbiol. Biotechnol. 93: 707-722.  https://doi.org/10.1007/s00253-011-3757-6
  32. Chatterjee M, Pushkaran AC, Vasudevan AK, Menon KKN, Biswas R, Mohan CG. 2018. Understanding the adhesion mechanism of a mucin binding domain from Lactobacillus fermentum and its role in enteropathogen exclusion. Int. J. Biol. Macromol. 110: 598-607.  https://doi.org/10.1016/j.ijbiomac.2017.10.107
  33. Dudik B, Kinova Sepova H, Bilka F, Paskova L, Bilkova A. 2020. Mucin pre-cultivated Lactobacillus reuteri E shows enhanced adhesion and increases mucin expression in HT-29 cells. Antonie Van Leeuwenhoek 113: 1191-1200.  https://doi.org/10.1007/s10482-020-01426-1
  34. Araujo F, Sarmento B. 2013. Towards the characterization of an in vitro triple co-culture intestine cell model for permeability studies. Int. J. Pharm. 458: 128-134.  https://doi.org/10.1016/j.ijpharm.2013.10.003
  35. Gagnon M, Berner AZ, Chervet N, Chassard C, Lacroix C. 2013. Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion. J. Microbiol. Methods 94: 274-279.  https://doi.org/10.1016/j.mimet.2013.06.027
  36. Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. 2015. TEER measurement techniques for in vitro barrier model systems. J. Lab. Autom. 20: 107-126. https://doi.org/10.1177/2211068214561025