DOI QR코드

DOI QR Code

Growth Response in Culture Condtions for a Clone of Marine Diatom Melosira nummuloides Isolated from Jeju Coastal Waters

제주 연안해역에서 분리한 규조류 Melosira nummuloides의 성장 특성

  • Ga-Young Kim (Department of Marine Biology, Kunsan National University) ;
  • Keon-Gang Jang (The Healthier Ocean Eco-System Corporation) ;
  • Gyung-Min Go (JDK Bio Corporation) ;
  • Hyung-Seop Kim (Department of Marine Biology, Kunsan National University)
  • 김가영 (국립군산대학교 해양생물자원학과) ;
  • 장건강 ((주)더스) ;
  • 고경민 ((주)DK바이오) ;
  • 김형섭 (국립군산대학교 해양생물자원학과)
  • Received : 2023.08.23
  • Accepted : 2023.12.19
  • Published : 2023.12.30

Abstract

Melosira nummuloides (KNU-HAPCC-101), which is a biological resource for fucoxanthin extraction, was separated from single cells, and optimal growth conditions were derived according to temperature, salinity, light intensity, light emitting diode, N:P ratio of culture medium, and dilution ratio of culture medium. These parameters were assessed to ascertain the best culture conditions for the most economical and efficient indoor mass production. The specific growth rate was the highest at 25℃ in temperature, but there was no significant difference between 15℃ and 20℃. M. nummuloides died at 0 psu in salinity, and the specific growth rate was the highest at 30 psu in respect to salinity. The light intensity was similar in all experimental groups except for 5 µmol photons m-2 s-2. The maximum biomass and specific growth rate in the light-emitting diode experiment were revealed at the red wavelength, but the concentration of chlorophyll-a was the lowest at the red wavelength whereas the white wavelength produced the highest chlorophyll-a concentration. In the experiment according to the ratio of nitrogen and phosphorus (N:P) based on the f/2 culture medium, the growth rate was significantly higher in the 15:1 to 50:1 ratio range. The growth rate according to the dilution concentration of the f/2 culture medium was the highest in the f/2 culture medium, but did not show a significant difference from the f/4 culture medium. M. nummuloides can be mass-cultured under conditions of a temperature of 15-25℃, a salinity of 15-35 psu, light intensity of 25-150 µmol photons m-2 s-2, and f/4 media concentration level with an N:P ratio 15:1 or more. Based on the data of this study, it is expected that fucoxanthin can be produced in a highly efficient manner through the development of a mass culture system.

Keywords

Acknowledgement

본 연구는 해양수산과학기술진흥원(KIMST)의 해양수산신산업기술사업화 지원사업(20220255)과 전북씨그랜트사업(20220163)으로 수행되었습니다

References

  1. Kang SH (2016) Utilization fo swine manure for microalgae cultivation. Fis. Master Thesis, Pukyong National University, 39 p 
  2. Kwon HK, Oh SJ, Yang HS, Yu YM (2011) Effects of temperature and salinity on the growth of marine benthic microalgae for phytoremediation. J Korean Soc Mar Environ Eng 14(2):130-137 
  3. Kim DG, Choi YE (2014) Microalgae cultivation using LED light. Korean Chem Eng Res 52(1):8-16 
  4. Kim Y, Shin HA, Choi JW, Kim MY, Go GM (2022) Compositional characteristics of the mircroalga Melosira nummuloides mass-cultured using Jeju lava seawater. Korean J Fish Aquat Sci 55(2):91-101 
  5. Noh YH, Kim KH, Moon HN, Go GM, Yeo IK (2020) Effect of dietary supplementation of diatom Melosira nummuloides and lactic acid bacteria Lactobacillus plantarum on the growth and immune stimulation responses of olive flounder Paralichthys olivaceus. Korean J Fish Aquat Sci 53(4):597-605 
  6. Ahn CY, Lee JY, Oh HM (2013) Control of microalgal growth and competition by N:P ratio manipulation. Korean J Environ Biol 31(2):61-68 
  7. An HC , Bae JH, Kwon ON, Park HG, Park JC (2014) Changes in the growth and biochemical composition of Chaetoceros calcitrans cultures using light-emitting diodes. J Kor Soc Fish Technol 50(4):447-454 
  8. Lee BM, Kim CJ, Kim CT, Seo JJ, Kim IH (2009) Concentration of fucoxanthin from Ecklonia cava using supercritical carbon dioxide. J Korean Soc Food Sci Nutr 38(10): 1452-1456 
  9. Jang EK, Shin HK, Pack SP (2014) Recent researches for diatom as inorganic and bioenvironmental materials. Korean Soc Biotechnol Bioeng J 29(1):9-21 
  10. Joo HM, Lee JH, Jung SW (2011) Correlations between cell abundance, bio-volume and chlorophyll a concentration of phytoplankton communities in coastal waters of Incheon, Tongyeong and Ulsan of Korea. Korean J Environ Biol 29(4):312-320 
  11. Hong HJ, Ryu BK, Kim JM (2020) Technological trends on extraction and utilization of bio-silica from the diatom cells. News and Info Chem Eng 38(5):466-473 
  12. Caldwell GS (2009) The Influence of bioactive oxylipins from marine diatoms on invertebrate reproduction and development. Mar Drugs 7(3):367-400 
  13. Castenholz RW (1963) An experimental study of the vertical distribution of littoral marine diatoms. Limnol Oceanogr 8(4):450-462 
  14. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour Technol 102(1):71-81 
  15. Hong JW, Kang NS, Jang HS, Kim HJ, An YR, Yoon M, Kim HS (2019) Biotechnological potential of Korean marine microalgal strains and its future prospectives. Ocean Polar Res 41(4):289-309 
  16. Jin H, Egashira S, Chau KW (1998) Carbon to chlorophyll-a ratio in modeling long-term eutrophication phenomena. Wat Sci Tech 38(11):227-235 
  17. Jonasdottir SH (2019) Fatty acid profiles and production in marine phytoplankton. Mar Drugs 17(3):151 
  18. Kim SM, Jung YJ, Kwon ON, Cha KH, Um BH, Chung DW, Pan CH (2012) A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol 166:1843-1855 
  19. Kuczynska P, Jemiola-Rzeminska M, Strzalka K (2015) Photosynthetic pigments in diatoms. Mar Drugs 13(9):5847-5881 
  20. Lenton TM, Watson AJ (2000) Redfield revisited: 1. regulation of nitrate, phosphate, and oxygen in the ocean. Glob Biogeochem Cycles 14(1):225-248 
  21. Lopez PJ, Descles J, Allen AE, Bowler C (2005) Prospects in diatom research. Curr Opin Biotechnol 16(2):180-186 
  22. Lora-Vilchis MC, Huanacuni-Pilco JI, Lopez-Fuerte FO, Perez-Rojas CA (2018) Growth rate, lipid, fatty acids, and pigments content of Melosira moniliformis (Bacillariophyta) in laboratory cultures. Rev Latinoam Biotechnol Amb Algal 9(1):1-16 
  23. McLean RO, Corrigan J, Webster J (1981) Heterotrophic nutrition Melosira nummuloides, a possible role in affecting distribution in Clyde Estuary. Br Phycol J 16(1):95-106 
  24. Miyajima T, Nakanishi M, Nakano S, Tezuka Y (1994) An autumnal bloom of the diatom Melosira granulata in a shallow eutrophic lake: physical and chemical constraints on its population dynamics. Arch Hydrobiol 130(2):143-162. 
  25. Prelle LR, Albrecht M, Karsten U, Damer P, Giese T, Jahns J, Muller S, Schulz L, Viertel L, Glaser K (2021) Ecophysiological and cell biological traits of benthic diatoms from coastal wetlands of the southern Baltic Sea. Front Microbiol 12:642811 
  26. Raharianto RB (2020) The effect of light intensity and photoperiod on marine diatom Melosira sp.. Indone Int Inst Life Sci BT 20-001:T202010047 
  27. Rehmanju M, Nesamma A, Khan N, Fatma T, Jutur P (2022) Media engineering in marine diatom Phaeodactylum tricornutum employing cost-effective substrates for sustainable production of high-value renewables. Biotechnol J 17(10):2100684 
  28. Schulze PSC, Barreira LA, Pereira HGC, Perales JA, Varela JCS (2014) Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol 32(8):422-430 
  29. Seth K, Kumar A, Rastogi RP, Meena M, Vinayak V (2021) Bioprospecting of fucoxanthin from diatoms- Challenges and perspectives. Algal Res 60:102475 
  30. Suryaningtyas IT, Permadi S, Solikin, Jasmadi, Sapulete S, Suparmo, Widyartini DS (2022) Growth and lipid profiles of Melosira sp. in response to different salinity levels. J Aquacult Fish Health 11(2):216-226 
  31. Thomson BE, Worrest RC, Dyke HV (1980) The growth response of an estuarine diatom (Melosira nummuloides [dillw.] Ag.) to UV-B (290-320 nm) radiation. Estuaries 3(1):69-72 
  32. Wulff BL, Mclntire C (1972) Laboratory studies of assemblages of attached estuarine diatoms. Limnol Oceanogr 17(2):200-214 
  33. Xia S, Wang K, Wan L, Li A, Hu Q, Zhang C (2013) Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar Drugs 11(7):2667-2681 
  34. Zhang Q, Hu G (2011) Effect of nitrogen to phosphorus ratios on cell proliferation in marine micro algae. Chin J Oceanol Limnol 29(4):739-745