DOI QR코드

DOI QR Code

Analysis of Shear Friction Strength of Separated Steel Fiber Reinforced Concrete under Direct Shear Test

직접전단 시험을 통한 분리타설된 강섬유 보강 콘크리트의 전단마찰강도 분석

  • Lee, Hye-Won (Dept. of Architectural Engineering, Hanyang University) ;
  • Son, Dong-Hee (Dept. of Architectural Engineering, Hanyang University) ;
  • Bae, Baek-Il (Dept. of Digital Architecture & Urban Engineering, Hanyang Cyber University) ;
  • Choi, Chang-Sik (Dept. of Architectural Engineering, Hanyang University)
  • 이혜원 (한양대 건축공학과) ;
  • 손동희 (한양대 건축공학과) ;
  • 배백일 (한양사이버대 디지털건축도시공학과) ;
  • 최창식 (한양대 건축공학부)
  • Received : 2023.07.31
  • Accepted : 2023.10.04
  • Published : 2023.10.30

Abstract

When precast concrete elements and cast-in-place concrete are formed separately, they create shear friction at their interface. Ensuring structural integrity is vital, and this involves placing shear friction reinforcement at this interface. Steel fibers are recognized for enhancing shear strength by leveraging the dowel action of shear friction reinforcements, and shear friction capacity can be improved by using steel fibers locally. In this study, 12 push-off tests were conducted to assess how steel fiber reinforced concrete (SFRC) contributes to shear friction strength in direct shear. The experimental findings were also compared with the predicted values from current code provisions. These experiments revealed that the crack width at maximum shear friction strength increased as the volume of steel fibers increased, and the contribution of concrete also increased with higher steel fiber volume. Notably, Eurocode 2 yielded higher contributions compared to AASHTO LRFD. Eurocode 2, which takes into account concrete's tensile strength, provided the most accurate results. Therefore, future studies should consider the influence of concrete when designing for shear friction strength.

Keywords

Acknowledgement

이 논문은 2023년도 정부(과학기술정보통신부) 연구비 지원에 의한 결과의 일부임. (과제번호: NRF-2022R1A2C3008940, RS-2023-00207763)

References

  1. ACI Committee 318 (2019). Building code requirements for structural concrete (ACI 318-19). American Concrete Institute, Farmington Hill, Mich, 397-466.
  2. ACI Committee 544 (2002). State of the art report on fiber reinforced concrete (544.1R-96). American Concrete Institute, Farmington Hill, Mich, 7-23.
  3. American Association of State Highway and Transportation Officials (2020). AASHTO LRFD Bridge Design Specifications(SI Units), AASHTO.
  4. Birkeland, P. W., & Birkeland, H. W. (1966). Connections in precast concrete construction. Journal Proceedings, 63(3), 345-368.
  5. Committe in European Norm. (2004). Eurocode 2-Design of Concrete Structures; Part I - General Rules and Rules for Building, CEN.
  6. Hanson, N. W. (1960). Precast-prestressed concrete bridges 2: Horizontal shear connections. Journal of the PCA Research and development laboratories, 17(4), 38-58.
  7. Harries, K. A., Zeno, G., & Shahrooz, B. (2012). Toward an improved understanding of shear-friction behavior. ACI Structural Journal, 109(6), 835-844.
  8. Hofbeck, J. A., Ibrahim, I. O., & Mattock, A. H. (1969). Shear transfer in reinforced concrete. Journal Proceedings, 66(2), 119-128.
  9. International Federation for Structural Concrete (fib) (2010). Structural connections for Structural connections for precast concrete buildings, 1st ed. Lausanne, Switzerland.
  10. Jang, H., Lee, H., Cho, K., & Kim, J. (2017). Experimental study on shear performance of plain construction joints integrated with ultra-high performance concrete (UHPC). Construction and Building Materials, 152, 16-23. https://doi.org/10.1016/j.conbuildmat.2017.06.156
  11. Kahn, L. F., & Mitchell, A. D. (2002). Shear friction tests with high-strength concrete. ACI Structural Journal, 99(1), 98-103.
  12. Kal, K., Kim, K., Lee, D., Hwang, J., & Oh, Y. (2010). Experimental study on shear strength of steel fiber reinforced concrete beams. Journal of the Korea institute for structural maintenance and inspection, 14(3), 160-170.
  13. Korea Design Standard (KDS) (2022). Concrete design code (KDS 14 20 00). Ministry of Land, Infrastructure and Transport (MOLIT), Sejong, Korea.
  14. Loov, R. E., & Patnaik, A. K. (1994). Horizontal shear strength of composite concrete beams with a rough interface. PCI Journal, 39(1), 48-109. https://doi.org/10.15554/pcij.01011994.48.69
  15. Mattock, A. H., & Hawkins, N. M. (1972). Shear transfer in reinforced concrete-Recent research. PCI Journal. 17(2), 55-75. https://doi.org/10.15554/pcij.03011972.55.75
  16. Mattock, A. H., Li, W. K., & Wang, T. C. (1976). Shear transfer in lightweight reinforced concrete. PCI Journal. 21(1), 20-39.
  17. Randl, N. (2013). Design recommendations for interface shear transfer in fib Model Code 2010, 14(3), 230-241. https://doi.org/10.1002/suco.201300003
  18. Resende, T. L., Cardoso, D. C., & Shehata, L. C. (2020). Influence of steel fibers on the dowel action of RC beams without stirrups. Engineering Structures, 221, 111044.
  19. Semendary, A. A., Hamid, W. K., Steinberg, E. P., & Khoury, I. (2020). Shear friction performance between high strength concrete (HSC) and ultra high performance concrete (UHPC) for bridge connection applications. Engineering Structures, 205, 110-122.