DOI QR코드

DOI QR Code

균열 정보와 신경망 모델을 이용한 철근콘크리트 보의 전단 성능 예측 연구

Predicting Shear Performance of Reinforced Concrete Beams Through Crack Data and Neural Network Modeling

  • Kwon, Ah-Young (Dept. of Architectural Engineering, Inha University) ;
  • Eng Lybundith (Dept. of Architectural Engineering, Inha University) ;
  • Kim, Changhyuk (Dept. of Architectural Engineering, Inha University)
  • 투고 : 2023.07.13
  • 심사 : 2023.09.14
  • 발행 : 2023.10.30

초록

This study aims to predict how reinforced concrete beams perform under shear stress using Artificial Neural Networks (ANN) and numerical crack data. The shear crack data from reinforced concrete beam specimens through finite element analysis were obtained. Afterward, K-clustering to create an input dataset for the ANN analysis was used. The training and testing of a multi-layer perceptron regression model involved the use of samples that had been analyzed using the Finite Element Method (FEM). The evaluation of the ANN model's performance considered the Mean Absolute Error (MAE), Adjusted R squared, Coefficient of Correlation, and Coefficient of Variation (CV).

키워드

과제정보

이 연구는 2023년도 인하대학교의 지원에 의한 결과의 일부임. 또한 이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1C1C1009269).

참고문헌

  1. MoLIT. (2023). Current status of building. (In Korean) http://www.molit.go.kr/USR/NEWS/m_71/dtl.jsp?lcmspage=1&id=95087983
  2. Cladera, A., & Mari, A. R. (2004). Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part II: beams with stirrups. Engineering Structures, 26(7), 927-936. https://doi.org/10.1016/j.engstruct.2004.02.011
  3. Adhikary, B. B., & Mutsuyoshi, H. (2006). Prediction of shear strength of steel fiber RC beams using neural networks. Construction and Building Materials, 20(9), 801-811. https://doi.org/10.1016/j.conbuildmat.2005.01.047
  4. Tanarslan, H. M., Secer, M., & Kumanlioglu, A. (2012). An approach for estimating the capacity of RC beams strengthened in shear with FRP reinforcements using artificial neural networks. Construction and Building Materials, 30, 556-568. https://doi.org/10.1016/j.conbuildmat.2011.12.008
  5. Oreta, A. W. C. (2019). Bond strength prediction model of corroded reinforcement in concrete using neural network. GEOMATE Journal, 16(54), 55-61.
  6. Koo, S., Shin, D., & Kim, C. (2021). Application of principal component analysis approach to predict shear strength of reinforced concrete beams with stirrups. Materials, 14(13), 3471.
  7. Sohn, J. M., Kim, D. S., & Hwang, H. B. (2020). Improvement of learning concrete crack detection model by weighted loss function. Journal of the Korea Society of Computer and Information, 25(10), 15-22. (In Korean) https://doi.org/10.9708/JKSCI.2020.25.10.015
  8. Choi, C. H. (2021). An Automated Image Rectification Method using Convolutional Neural Network(CNN) for Crack Images [Master's thesis, Hanyang University]. (In Korean)
  9. Kim, S. M., Sohn, J. M., & Kim, D. S. (2021). A Study on Visualization of Concrete Crack Analysis Results. Proceedings of the Korean Society of Computer Information Conference, 2021(7), 363-366. (In Korean)
  10. Ji, B. (2021). Machine Learning-based Concrete Crack Detection Framework for Facility Maintenance. Journal of the Korean GEO-environmental Society, 22(10), 5-12. (In Korean) https://doi.org/10.14481/JKGES.2021.22.10.5
  11. Cervenka, V., Cervenka, J., & Pukl, R. (2002). ATENA-A tool for engineering analysis of fracture in concrete. Sadhana, 27, 485-492. https://doi.org/10.1007/BF02706996
  12. Kim, K. B. (2023). Analysis of the Diagonal Shear Crack Angle of Reinforced Concrete Beams [Master's thesis, Sungkyunkwan University]. (In Korean)
  13. Shin, D., Haroon, M., Kim, C., Lee, B. S., & Lee, J. Y. (2019). Shear Strength Reduction of Large-Scale Reinforced Concrete Beams with High-Strength Stirrups. ACI Structural Journal, 116(5), 161-172. (In Korean) https://doi.org/10.14359/51716759
  14. Kim, C. (2018). Performance of Reinforced Concrete Beams Strengthened with Bi-directional CFRP Strips. Journal of the Korea institute for structural maintenance and inspection, 22(6), 30-36. (In Korean)
  15. Angelakos, D. (1999). The influence of concrete strength and longitudinal reinforcement ratio on the shear strength of large-size reinforced concrete beams with, and without, transverse reinforcement [Master's thesis, Toronto University].
  16. Cladera, A. (2002). Shear design of reinforced high-strength concrete beams [Doctoral dissertation, University of the Balearic Islands].
  17. Collins, M. P., & Kuchma, D. (1999). How safe are our large, lightly reinforced concrete beams, slabs, and footings?. Structural Journal, 96(4), 482-490.
  18. Johnson, M. K., & Ramirez, J. A. (1989). Minimum Shear Reinforcement in Beams With Higher Strength Concrete. Structural Journal, 86(4), 376-382. https://doi.org/10.14359/2896
  19. Cervenka, V., Rimkus, A., Gribniak, V., & Cervenka, J. (2022). Simulation of the crack width in reinforced concrete beams based on concrete fracture. Theoretical and applied fracture mechanics, 121, 103428.
  20. Taerwe, L., & Matthys, S. (2013). Fib model code for concrete structures 2010.
  21. KCI (2021). Design of Concrete Structures (KDS 14 2000: 2021) and Commentary. Seoul, Korea: Kimoondang Publishing Company. Korea Concrete Institute (KCI). (In Korean)
  22. Arthur, D., & Vassilvitskii, S. (2007). K-means++ the advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 1027-1035.
  23. Geron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. " O'Reilly Media, Inc.".
  24. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, B., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., & Zheng, X. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.
  25. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.