Acknowledgement
이 연구는 2023년도 인하대학교의 지원에 의한 결과의 일부임. 또한 이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1C1C1009269).
References
- MoLIT. (2023). Current status of building. (In Korean) http://www.molit.go.kr/USR/NEWS/m_71/dtl.jsp?lcmspage=1&id=95087983
- Cladera, A., & Mari, A. R. (2004). Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part II: beams with stirrups. Engineering Structures, 26(7), 927-936. https://doi.org/10.1016/j.engstruct.2004.02.011
- Adhikary, B. B., & Mutsuyoshi, H. (2006). Prediction of shear strength of steel fiber RC beams using neural networks. Construction and Building Materials, 20(9), 801-811. https://doi.org/10.1016/j.conbuildmat.2005.01.047
- Tanarslan, H. M., Secer, M., & Kumanlioglu, A. (2012). An approach for estimating the capacity of RC beams strengthened in shear with FRP reinforcements using artificial neural networks. Construction and Building Materials, 30, 556-568. https://doi.org/10.1016/j.conbuildmat.2011.12.008
- Oreta, A. W. C. (2019). Bond strength prediction model of corroded reinforcement in concrete using neural network. GEOMATE Journal, 16(54), 55-61.
- Koo, S., Shin, D., & Kim, C. (2021). Application of principal component analysis approach to predict shear strength of reinforced concrete beams with stirrups. Materials, 14(13), 3471.
- Sohn, J. M., Kim, D. S., & Hwang, H. B. (2020). Improvement of learning concrete crack detection model by weighted loss function. Journal of the Korea Society of Computer and Information, 25(10), 15-22. (In Korean) https://doi.org/10.9708/JKSCI.2020.25.10.015
- Choi, C. H. (2021). An Automated Image Rectification Method using Convolutional Neural Network(CNN) for Crack Images [Master's thesis, Hanyang University]. (In Korean)
- Kim, S. M., Sohn, J. M., & Kim, D. S. (2021). A Study on Visualization of Concrete Crack Analysis Results. Proceedings of the Korean Society of Computer Information Conference, 2021(7), 363-366. (In Korean)
- Ji, B. (2021). Machine Learning-based Concrete Crack Detection Framework for Facility Maintenance. Journal of the Korean GEO-environmental Society, 22(10), 5-12. (In Korean) https://doi.org/10.14481/JKGES.2021.22.10.5
- Cervenka, V., Cervenka, J., & Pukl, R. (2002). ATENA-A tool for engineering analysis of fracture in concrete. Sadhana, 27, 485-492. https://doi.org/10.1007/BF02706996
- Kim, K. B. (2023). Analysis of the Diagonal Shear Crack Angle of Reinforced Concrete Beams [Master's thesis, Sungkyunkwan University]. (In Korean)
- Shin, D., Haroon, M., Kim, C., Lee, B. S., & Lee, J. Y. (2019). Shear Strength Reduction of Large-Scale Reinforced Concrete Beams with High-Strength Stirrups. ACI Structural Journal, 116(5), 161-172. (In Korean) https://doi.org/10.14359/51716759
- Kim, C. (2018). Performance of Reinforced Concrete Beams Strengthened with Bi-directional CFRP Strips. Journal of the Korea institute for structural maintenance and inspection, 22(6), 30-36. (In Korean)
- Angelakos, D. (1999). The influence of concrete strength and longitudinal reinforcement ratio on the shear strength of large-size reinforced concrete beams with, and without, transverse reinforcement [Master's thesis, Toronto University].
- Cladera, A. (2002). Shear design of reinforced high-strength concrete beams [Doctoral dissertation, University of the Balearic Islands].
- Collins, M. P., & Kuchma, D. (1999). How safe are our large, lightly reinforced concrete beams, slabs, and footings?. Structural Journal, 96(4), 482-490.
- Johnson, M. K., & Ramirez, J. A. (1989). Minimum Shear Reinforcement in Beams With Higher Strength Concrete. Structural Journal, 86(4), 376-382. https://doi.org/10.14359/2896
- Cervenka, V., Rimkus, A., Gribniak, V., & Cervenka, J. (2022). Simulation of the crack width in reinforced concrete beams based on concrete fracture. Theoretical and applied fracture mechanics, 121, 103428.
- Taerwe, L., & Matthys, S. (2013). Fib model code for concrete structures 2010.
- KCI (2021). Design of Concrete Structures (KDS 14 2000: 2021) and Commentary. Seoul, Korea: Kimoondang Publishing Company. Korea Concrete Institute (KCI). (In Korean)
- Arthur, D., & Vassilvitskii, S. (2007). K-means++ the advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 1027-1035.
- Geron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. " O'Reilly Media, Inc.".
- Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, B., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., & Zheng, X. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.
- Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.