DOI QR코드

DOI QR Code

이종 테이퍼 형식 구조물의 결함추정기법

Identifying Faults in Differently Tapered Structures

  • 이종원 (남서울대학교 건축공학과)
  • Lee, Jong-Won (Dept. of Architectural Engineering, Namseoul University)
  • 투고 : 2023.07.01
  • 심사 : 2023.09.25
  • 발행 : 2023.10.30

초록

In tall buildings, there is a common use of taper-type structures, where structural properties change with height. Cantilever-type structures, which combine different taper types, are also considered. This paper introduces a method for identifying faults in a cantilever beam consisting of two tapered beam sections. To achieve this, a technique was first explored to estimate the modal characteristics of the un-cracked beam by considering boundary and continuity conditions. Then an equivalent bending stiffness was introduced for the cracked beam and an integral characteristic equation was established to estimate its natural frequency. This method was applied, along with neural network techniques, to identify cracks in a sample structure. Through numerical simulations and the generation of neural network training patterns, the sizes and locations of cracks were successfully identified. This suggests that this approach can be valuable for detecting faults in differently tapered cantilever-type structures.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2022R1A2C1004708).

참고문헌

  1. Cao, D., Gao, Y., Wang, J., Yao, M., & Zhang, W. (2019). Analytical analysis of free vibration of non-uniform and non-homogenous beams: Asymptotic perturbation approach, Applied Mathematical Modelling, 65, 526-534, doi: http://dx.doi.org/10.1016/j.apm.2018.08.026
  2. Chen, W.R. (2021). Vibration Analysis of Axially Functionally Graded Timoshenko Beams with Non-uniform Cross-section, Latin American Journal of Solids and Structures, 18(7), e397, doi: https://doi.org/10.1590/1679-78256434
  3. Ling, M., Chen, S., Li, Q., & Tian, G. (2018). Dynamic stiffness matrix for free vibration analysis of flexure hinges based on non-uniform Timoshenko beam, Journal of Sound and Vibration, 437, 40-52, doi: http://dx.doi.org/10.1016/j.jsv.2018.09.013
  4. Liu X., Chang, L., Banerjee, J.R., & Dan, H.C. (2022). Closed-form dynamic stiffness formulation for exact modal analysis of tapered and functionally graded beams and their assemblies, International Journal of Mechanical Sciences, 214, 106887, doi: http://dx.doi.org/10.1016/j.ijmecsci.2021.106887
  5. Ma, Y., Du, X., Chen, G., & Yang, F. (2020). Natural vibration of a non?uniform beam with multiple transverse cracks, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, 161, doi: https://doi.org/10.1007/s40430-020-2246-1
  6. Moukhliss, A., Rahmouni, A., Bouksour, O., & Benamar, R. (2022). Using the discrete model for the processing of natural vibrations, tapered beams made of AFG materials carrying masses at different spots, Materials Today: Proceedings, 52, 21-28, doi: https://doi.org/10.1016/j.matpr.2021.10.107
  7. Nikolic, A., & Salinic, S. (2020). Free vibration analysis of 3D non-uniform beam: the rigid segment approach, Engineering Structures, 222, 110796, doi: https://doi.org/10.1016/j.engstruct.2020.110796
  8. Rajasekaran, S., & Khaniki, H.B. (2019). Size-dependent forced vibration of non-uniform bi-directional functionally graded beams embedded in variable elastic environment carrying a moving harmonic mass, Applied Mathematical Modelling, 72, 129-154, doi: https://doi.org/10.1016/j.apm.2019.03.021
  9. Singh, R., & Sharma, P. (2021). Free vibration analysis of axially functionally graded tapered beam using harmonic differential quadrature method, Materials Today: Proceedings, 44, 2223-2227, doi: https://doi.org/10.1016/j.matpr.2020.12.357
  10. Wang, P., Wu, N., Luo, H., & Sun, Z. (2021). Study On Vibration Response Of A Non-Uniform Beam With Nonlinear Boundary Condition, Mechanical Engineering, 19(4), 781-804, doi: https://doi.org/10.22190/FUME210324045W
  11. Wu, C.C. (2021). Free Vibration Analysis of a Free-Free Single-Tapered Beam Carrying Arbitrary Concentrated Elements Using Modified Mode-Superposition Method (MMSM), Journal of Marine Science and Technology, 29(3), 365-382, doi: http://dx.doi.org/10.51400/2709-6998.1441
  12. Yang, X.F., Swamidas, A.S.J., & Seshadri, R. (2001). Crack identification in vibrating beams using the energy method, Journal of Sound and Vibration, 244, 339-357, doi: http://dx.doi.org/10.1006/jsvi.2000.3498
  13. Zhao,Y., Huang, Y., & Guo, M. (2017). A novel approach for free vibration of axially functionally graded beams with non-uniform cross-section based on Chebyshev polynomials theory, Composite Structures, 168, 277-284, doi: http://dx.doi.org/10.1016/j.compstruct.2017.02.012