과제정보
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2022R1A2C1004708).
참고문헌
- Cao, D., Gao, Y., Wang, J., Yao, M., & Zhang, W. (2019). Analytical analysis of free vibration of non-uniform and non-homogenous beams: Asymptotic perturbation approach, Applied Mathematical Modelling, 65, 526-534, doi: http://dx.doi.org/10.1016/j.apm.2018.08.026
- Chen, W.R. (2021). Vibration Analysis of Axially Functionally Graded Timoshenko Beams with Non-uniform Cross-section, Latin American Journal of Solids and Structures, 18(7), e397, doi: https://doi.org/10.1590/1679-78256434
- Ling, M., Chen, S., Li, Q., & Tian, G. (2018). Dynamic stiffness matrix for free vibration analysis of flexure hinges based on non-uniform Timoshenko beam, Journal of Sound and Vibration, 437, 40-52, doi: http://dx.doi.org/10.1016/j.jsv.2018.09.013
- Liu X., Chang, L., Banerjee, J.R., & Dan, H.C. (2022). Closed-form dynamic stiffness formulation for exact modal analysis of tapered and functionally graded beams and their assemblies, International Journal of Mechanical Sciences, 214, 106887, doi: http://dx.doi.org/10.1016/j.ijmecsci.2021.106887
- Ma, Y., Du, X., Chen, G., & Yang, F. (2020). Natural vibration of a non?uniform beam with multiple transverse cracks, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, 161, doi: https://doi.org/10.1007/s40430-020-2246-1
- Moukhliss, A., Rahmouni, A., Bouksour, O., & Benamar, R. (2022). Using the discrete model for the processing of natural vibrations, tapered beams made of AFG materials carrying masses at different spots, Materials Today: Proceedings, 52, 21-28, doi: https://doi.org/10.1016/j.matpr.2021.10.107
- Nikolic, A., & Salinic, S. (2020). Free vibration analysis of 3D non-uniform beam: the rigid segment approach, Engineering Structures, 222, 110796, doi: https://doi.org/10.1016/j.engstruct.2020.110796
- Rajasekaran, S., & Khaniki, H.B. (2019). Size-dependent forced vibration of non-uniform bi-directional functionally graded beams embedded in variable elastic environment carrying a moving harmonic mass, Applied Mathematical Modelling, 72, 129-154, doi: https://doi.org/10.1016/j.apm.2019.03.021
- Singh, R., & Sharma, P. (2021). Free vibration analysis of axially functionally graded tapered beam using harmonic differential quadrature method, Materials Today: Proceedings, 44, 2223-2227, doi: https://doi.org/10.1016/j.matpr.2020.12.357
- Wang, P., Wu, N., Luo, H., & Sun, Z. (2021). Study On Vibration Response Of A Non-Uniform Beam With Nonlinear Boundary Condition, Mechanical Engineering, 19(4), 781-804, doi: https://doi.org/10.22190/FUME210324045W
- Wu, C.C. (2021). Free Vibration Analysis of a Free-Free Single-Tapered Beam Carrying Arbitrary Concentrated Elements Using Modified Mode-Superposition Method (MMSM), Journal of Marine Science and Technology, 29(3), 365-382, doi: http://dx.doi.org/10.51400/2709-6998.1441
- Yang, X.F., Swamidas, A.S.J., & Seshadri, R. (2001). Crack identification in vibrating beams using the energy method, Journal of Sound and Vibration, 244, 339-357, doi: http://dx.doi.org/10.1006/jsvi.2000.3498
- Zhao,Y., Huang, Y., & Guo, M. (2017). A novel approach for free vibration of axially functionally graded beams with non-uniform cross-section based on Chebyshev polynomials theory, Composite Structures, 168, 277-284, doi: http://dx.doi.org/10.1016/j.compstruct.2017.02.012