Acknowledgement
This work is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land,Infrastructure and Transport (No.RS-2023-00246154).
References
- Aboutaha, R.S. and Machado, R. (1998), "Seismic resistance of steel confined reinforced concrete (SCRC) columns", Struct. Des. Tall Build., 7(3), 251-260. https://doi.org/10.1002/(sici)1099-1794(199809)7:3<251::aidtal112>3.3.co,2-a.
- ACI Committee 318 (2014), ACI 318-14 Building Code Requirement for Structural Concrete, American Concrete Institute, Farmington Hills, MI, USA.
- American Society of Civil Engineers (2017), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, Reston, VA, USA.
- ANSI/AISC (2016), ANSI/AISC 360-16 Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA.
- Applied Technology Council (2005), Improvement of Nonlinear Static Seismic Analysis Procedures, FEMA 440, Federal Emergency Management Agency, Washington, D.C., USA.
- Arya, C. (2015), "Eurocode 2: Design of concrete structures", Design of Structural Elements, CRC Press, Boca Raton, FL, USA.
- Bae, S. and Bayrak, O. (2008), "Plastic hinge length of reinforced concrete columns", ACI Struct. J., 105(3), 290. https://doi.org/10.14359/19788.
- Bai, Y., Ma, X., Wang, B., Cao, G. and Beer, M. (2020), "Cumulative component damages on collapse capacity of ductile steel and CFT moment resisting frames under overdesign ground motions", J. Earthq. Eng., 26(6), 3012-3033. https://doi.org/10.1080/13632469.2020.1784315.
- British Standards Institution (1986), BS 8100 Lattice Towers and Masts, British Standards Institution, London, UK.
- Building Seismic Safety Council (US) (1988), NEHRP Recommended Provisions for the Development of Seismic Regulations for New Buildings, Building Seismic Safety Council, Washington, D.C., USA.
- CEN (2005), EN 1998-3. Eurocode 8 - Design of Structures for Earthquake Resistance - Part 3: Assessment and Retrofitting of Buildings, European Committee for Standardization, Brussels, Belgium.
- Chan, S.L. and Chui, P.P.T. (1997), "A generalized design-based elastoplastic analysis of steel frames by section assemblage concept", Eng. Struct., 19(8), 628-636. https://doi.org/10.1016/S0141-0296(96)00138-1.
- Chen, B., Lai, Z., Yan, Q., Varma, A.H. and Yu, X. (2017), "Experimental behavior and design of CFT-RC short columns subjected to concentric axial loading", J. Struct. Eng., 143(11), 04017148. https://doi.org/10.1061/(asce)st.1943-541x.0001879.
- Chung, J. and Matsui, C. (2005), "SRC standards in Japan and comparison of various standards for CFT columns", Steel Struct., 5, 315-323.
- Braga, F., Gigliotti, R., Laterza, M., D'Amato, M. and Kunnath, S. (2012), "Validation of a modified steel bar model incorporating bond-slip for seismic assessment of concrete structures", J. Struct. Eng., 138(11), 1342-1350. https://doi.org/10.1061/(asce)st.1943-541x.0000588.
- Dell'Aglio, G., Montuori, R., Nastri, E. and Piluso, V. (2019), "Consideration of second-order effects on plastic design of steel moment resisting frames", Bull. Earthq. Eng., 17, 3041-3070. https://doi.org/10.1007/s10518-019-00573-9.
- Eslami, A. and Ronagh, H.R. (2014), "Effect of elaborate plastic hinge definition on the pushover analysis of reinforced concrete buildings", Struct. Des. Tall Spec. Build., 23(4), 254-271. https://doi.org/10.1002/tal.1035.
- Hajjar, J.F. (2000), "Concrete-filled steel tube columns under earthquake loads", Prog. Struct. Eng. Mater., 2(1), 72-81. https://doi.org/10.1002/(sici)1528-2716(200001/03)2:1<72::aidpse9>3.0.co,2-e.
- Hatzigeorgiou, G.D. (2008), "Numerical model for the behavior and capacity of circular CFT columns, Part I: Theory", Eng. Struct., 30(6), 1573-1578. https://doi.org/10.1016/j.engstruct.2007.11.001.
- Hoang, V.L., Nguyen Dang, H., Jaspart, J.P. and Demonceau, J.F. (2015), "An overview of the plastic-hinge analysis of 3D steel frames", Asia Pacific J. Comput. Eng., 2(1), 1-34. https://doi.org/10.1186/s40540-015-0016-9.
- Hu, H.T., Huang, C.S., Wu, M.H. and Wu, Y.M. (2003), "Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect", J. Struct. Eng., 129(10), 1322-1329. https://doi.org/10.1061/(asce)0733-9445(2003)129:10(1322).
- Inel, M. and Ozmen, H.B. (2006), "Effects of plastic hinge properties in nonlinear analysis of reinforced concrete buildings", Eng. Struct., 28(11), 1494-1502. https://doi.org/10.1016/j.engstruct.2006.01.017.
- Ju, S. and Kwak, H.G. (2021), "Moment-curvature approach for blast analysis of RC frames with multitudinous members", J. Build. Eng., 42, 102463. https://doi.org/10.1016/j.jobe.2021.102463.
- Kannas, H. and Wafi, A.M. (2020), "Study of the plastic-hinge analysis of 3D steel frames applying nonlinear static analysis", Int. J. Adv. Eng. Sci. Appl., 1(3), 24-29. https://doi.org/10.47346/ijaesa.v1i3.38.
- Kim, D.K. (2005), "A database for composite columns", No. August: 282, Georgia Institute of Technology, Atlanta, GA, USA.
- Kim, S.H. and Kwak, H.G. (2021), "FE analysis of ultimate strength of circular CFT columns considering creep effect", Comput. Concrete, 28(3), 333-345. https://doi.org/10.12989/cac.2021.28.3.333.
- Kim, S.H. and Kwak, H.G. (2022), "Optimization of an RC frame structure based on a plastic analysis and direct search of a section database", J. Build. Eng., 48, 103959. https://doi.org/10.1016/j.jobe.2021.103959.
- Korea Price Information (n.d.), https://www.kpi.or.kr/
- Kwak, H.G. and Kim, J. (2008), "Optimum design of reinforced concrete plane frames based on predetermined section database", CAD Comput. Aid. Des., 40(3), 396-408. https://doi.org/10.1016/j.cad.2007.11.009.
- Kwak, H.G. and Kim, S.P. (2002), "Nonlinear analysis of RC beams based on moment-curvature relation", Comput. Struct., 80(7-8), 615-628. https://doi.org/10.1016/S0045-7949(02)00030-5.
- Kwon, S.H., Kim, Y.Y. and Kim, J.K. (2005), "Long-term behaviour under axial service loads of circular columns made from concrete filled steel tubes", Mag. Concrete Res., 57(2), 87-99. https://doi.org/10.1680/macr.2005.57.2.87.
- Lai, Z., Varma, A.H. and Griffis, L.G. (2016), "Analysis and design of noncompact and slender CFT beam-columns", J. Struct. Eng., 142(1), 04015097. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001349.
- Lee, C. and Ahn, J. (2003), "Flexural design of reinforced concrete frames by genetic algorithm", J. Struct. Eng., 129(6), 762-774. https://doi.org/10.1061/(asce)0733-9445(2003)129:6(762).
- Liu, S.W., Liu, Y.P. and Chan, S.L. (2012), "Advanced analysis of hybrid steel and concrete frames: Part 2: Refined plastic hinge and advanced analysis", J. Constr. Steel Res., 70, 337-349. https://doi.org/10.1016/j.jcsr.2011.09.002.
- Lopez-Lopez, A., Tomas, A. and Sanchez-Olivares, G. (2016), "Influence of adjusted models of plastic hinges in nonlinear behaviour of reinforced concrete buildings", Eng. Struct., 124, 245-257. https://doi.org/10.1016/j.engstruct.2016.06.021.
- Lu, X., Lu, X., Guan, H., Zhang, W. and Ye, L. (2013), "Earthquake-induced collapse simulation of a super-tall mega-braced frame-core tube building", J. Constr. Steel Res., 82, 59-71. https://doi.org/10.1016/j.jcsr.2012.12.004.
- Luo, L., Ding, F.X., Wang, L. and Liu, X.M. (2021), "Plastic hinge and seismic structural measures of terminal stirrup-confined rectangular CFT columns under low-cyclic load", J. Build. Eng., 34, 101908. https://doi.org/10.1016/j.jobe.2020.101908.
- Monti, G. and Petrone, F. (2015), "Yield and ultimate moment and curvature closed-form equations for reinforced concrete sections", ACI Struct. J., 112(4), 463-474. https://doi.org/10.14359/51687747.
- Montuori, R., Nastri, E. and Piluso, V. (2015), "Advances in theory of plastic mechanism control: Closed form solution for MR-frames", Earthq. Eng. Struct. Dyn., 44(7), 1035-1054. https://doi.org/10.1002/eqe.2498.
- Moon, J., Lehman, D.E., Roeder, C.W. and Lee, H.E. (2013), "Strength of circular concrete-filled tubes with and without internal reinforcement under combined loading", J. Struct. Eng., 139(12), 04013012. https://doi.org/10.1061/(asce)st.1943-541x.0000788.
- Morino, S., Uchikoshi, M. and Yamaguchi, I. (2001), "Concrete-filled steel tube column system-its advantages", Int. J. Steel Struct., 1(1), 33-44.
- Mostoufinezhad, D. and Farahbod, F. (2007), "Parametric study on moment redistribution in continuous RC beams using ductility demand and ductility capacity concept", Iran. J. Sci. Technol. Trans. B: Eng., 31(B5), 459-471. https://doi.org/10.22099/IJSTC.2007.747.
- Newmark, N.M. and Hall, W.J. (1982), Earthquake Spectra and Design, Earthquake Engineering Research Institute, Berkeley, CA, USA.
- Park, R. and Paulay, T. (1991), Reinforced Concrete Structures, John Wiley & Sons, Hoboken, NJ, USA.
- Ravikumara, H.S., Kulkarni, S.R. and Narayan, K.B. (2015), "A study on plastic hinge formation in RC frame by nonlinear static analysis", Int. J. Res. Eng. Technol., 4(9), 179-182. https://doi.org/10.15623/ijret.2015.0409031.
- Reza Banihashemi, M., Mirzagoltabar, A.R. and Tavakoli, H.R. (2015), "Development of the performance based plastic design for steel moment resistant frame", Int. J. Steel Struct., 15, 51-62. https://doi.org/10.1007/s13296-015-3004-6.
- Sepahvand, M.F., Akbari, J. and Kusunoki, K. (2019), "Plastic design of moment resisting frames using mechanism control", J. Constr. Steel Res., 153, 275-285. https://doi.org/10.1016/j.jcsr.2018.10.015.
- Shakir, A. and Rogowsky, D.M. (2000), "Evaluation of ductility and allowable moment redistribution in reinforced concrete structures", Can. J. Civil Eng., 27(6), 1286-1299. https://doi.org/10.1139/l00-059.
- Kevadkar, M.D. and Kodag, P.B. (2013), "Lateral load analysis of R.C.C. building", Int. J. Modern Eng. Res., 3(3), 1428-1434.
- Skalomenos, K.A., Hayashi, K., Nishi, R., Inamasu, H. and Nakashima, M. (2016), "Experimental behavior of concrete-filled steel tube columns using ultrahigh-strength steel", J. Struct. Eng., 142(9), 1-13. https://doi.org/10.1061/(asce)st.1943-541x.0001513.
- Stark, J.W. (2000), "European standards for composite construction", Proceedings of the Conference: Composite Construction in Steel and Concrete IV, Banff, Alberta, Canada, May-June.
- Tazarv, M. and Saiidi, M.S. (2016), "Seismic design of bridge columns incorporating mechanical bar splices in plastic hinge regions", Eng. Struct., 124, 507-520. https://doi.org/10.1016/j.engstruct.2016.06.041.
- Truong, G.T., Kim, J.C. and Choi, K.K. (2017), "Seismic performance of reinforced concrete columns retrofitted by various methods", Eng. Struct., 134, 217-235. https://doi.org/10.1016/j.engstruct.2016.12.046.
- Zhang, D.J., Ma, Y.S. and Wang, Y. (2015), "Compressive behavior of concrete filled steel tubular columns subjected to long-term loading", Thin Wall. Struct., 89, 205-211. https://doi.org/10.1016/j.tws.2014.12.020.
- Zhao, X., Wu, Y.F., Leung, A.Y. and Lam, H.F. (2011), "Plastic hinge length in reinforced concrete flexural members", Procedia Eng., 14, 1266-1274. https://doi.org/10.1016/j.proeng.2011.07.159.
- Zhou, T., Chen, Z. and Liu, H. (2012), "Seismic behavior of special shaped column composed of concrete filled steel tubes", J. Constr. Steel Res., 75, 131-141. https://doi.org/10.1016/j.jcsr.2012.03.015.