Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT). (No.2021R1A2C1010278).
References
- Alpaydin, E. (2020), Introduction to Machine Learning, The MIT Press, Cambridge, MA, USA.
- American Society of Civil Engineers (ASCE) (2007), Seismic Rehabilitation of Existing Buildings, American Society of Civil Engineers, Reston, VA, USA.
- Armaghani, D.J. and Asteris, P.G. (2021), "A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength", Neural Comput. Appl., 33(9), 4501-4532. https://doi.org/10.1007/s00521-020-05244-4.
- Armaghani, D.J., Hatzigeorgiou, G.D., Karamani, C., Skentou, A., Zoumpoulaki, I. and Asteris, P.G. (2019), "Soft computing-based techniques for concrete beams shear strength", Proc. Struct. Integr., 17, 924-933. https://doi.org/10.1016/j.prostr.2019.08.123.
- Asteris, P.G. and Mokos, V.G. (2019), "Concrete compressive strength using artificial neural networks", Neural Comput. Appl., 32(15), 11807-11826. https://doi.org/10.1007/s00521-019-04663-2.
- Asteris, P.G., Armaghani, D.J., Hatzigeorgiou, G.D., Karayannis, C.G. and Pilakoutas, K. (2019), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Comput. Concrete, 24(5), 469-488. https://doi.org/10.12989/cac.2019.24.5.469.
- Asteris, P.G., Lemonis, M.E., Le, T.T. and Tsavdaridis, K.D. (2021a), "Evaluation of the ultimate eccentric load of rectangular CFSTs using advanced neural network modeling", Eng. Struct., 248, 113297. https://doi.org/10.1016/j.engstruct.2021.113297
- Asteris, P.G., Mamou, A., Hajihassani, M., Hasanipanah, M., Koopialipoor, M., Le, T.T., Kardanin, N. and Armaghani, D.J. (2021b), "Soft computing based closed form equations correlating L and N-type Schmidt hammer rebound numbers of rocks", Transp. Geotech., 29, 100588. https://doi.org/10.1016/j.trgeo.2021.100588.
- Atalay, M.B. and Penzien, J. (1975), The Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment, Shear and Axial Force, Earthquake Engineering Research Center, University of California, Berkeley, CA, USA.
- Breiman, L. (1996a), "Bagging predictors", Mach. Learn., 24(2), 123-140. https://doi.org/10.1007/BF00058655.
- Breiman, L. (1996b), "Stacked regressions", Mach. Learn., 24(2), 123-140. https://doi.org/10.1007/BF00117832.
- Cavaleri, L., Chatzarakis, G.E., Di Trapani, F., Douvika, M.G., Roinos, K., Vaxevanidis, N.M. and Asteris, P.G. (2017), "Modeling of surface roughness in electro-discharge machining using artificial neural networks", Adv. Mater. Res., 6(2), 169-184. https://doi.org/10.12989/amr.2017.6.2.169.
- Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Mach. Learn., 20, 273-297. https://doi.org/10.1007/BF00994018.
- Elwood, K.J. and Moehle, J.P. (2008), "Dynamic shear and axial-load failure of reinforced concrete columns", J. Struct. Eng., 134(7), 1189-1198. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1189).
- Feng, D.C., Liu, Z.T., Wang, X.D., Jiang, Z.M. and Liang, S.X. (2020), "Failure mode classification and bearing capacity prediction for reinforced concrete columns based on ensemble machine learning algorithm", Adv. Eng. Informat., 45, 101-126. https://doi.org/10.1016/j.aei.2020.101126.
- Ghosh, J., Padgett, J.E. and Duenas-Osorio, L. (2013), "Surrogate modeling and failure surface visualization for efficient seismic vulnerability assessment of highway bridges", Probab. Eng. Mech., 34, 189-199. https://doi.org/10.1016/j.probengmech.2013.09.003.
- Jeon, J.S., Shafieezadeh, A. and DesRoches, R. (2014), "Statistical models for shear strength of RC beam-column joints using machine-learning techniques", Earthq. Eng. Struct. Dyn., 43(14), 2075-2095. https://doi.org/10.1002/eqe.2437.
- Keshtegar, B., Nehdi, M.L., Trung, N.T. and Kolahchi, R. (2021), "Predicting load capacity of shear walls using SVR-RSM model", Appl. Soft Comput., 112, 107739. https://doi.org/10.1016/j.asoc.2021.107739.
- Lehman, D.E. and Moehle, J.P. (2000), Seismic Performance of Well-Confined Concrete Bridge Columns, Pacific Earthquake Engineering Research Center, Berkeley, CA, USA.
- Lu, S., Koopialipoor, M., Asteris, P.G., Bahri, M. and Armaghani, D.J. (2020), "A novel feature selection approach based on tree models for evaluating the punching shear capacity of steel fiber-reinforced concrete flat slabs", Mater., 13(17), 3902. https://doi.org/10.3390/ma13173902.
- Luo, H. and Paal, S.G. (2018), "Machine learning-based backbone curve model of reinforced concrete columns subjected to cyclic loading reversals", J. Comput. Civil Eng., 32(5), 04018042. https://orcid.org/0000-0002-0141-6679.
- Lynn, A.C., Moehle, J.P., Mahin, S.A. and Holmes, W.T. (1996), "Seismic evaluation of existing reinforced concrete building columns", Earthq. Spectra., 12(4), 715-739. https://doi.org/10.1193/1.1585907.
- Mangalathu, S. and Jeon, J.S. (2018), "Classification of failure mode and prediction of shear strength for reinforced concrete beam-column joints using machine learning techniques", Eng. Struct., 160, 85-94. https://doi.org/10.1016/j.engstruct.2018.01.008.
- Mangalathu, S., Jeon, J.S. and DesRoches, R. (2018), "Critical uncertainty parameters influencing seismic performance of bridges using Lasso regression", Earthq. Eng. Struct. Dyn., 47(3), 784-801. https://doi.org/10.1002/eqe.2991.
- Mansouri, I., Azmathulla, H.M. and Hu, J.W. (2018), "Gene expression programming application for prediction of ultimate axial strain of FRP-confined concrete", Adv. Civil Arch. Eng., 9(16), 64-76. https://doi.org/10.13167/2018.16.6.
- Ohno, T. and Nishioka, T. (1984), "An experimental study on energy absorption capacity of columns in reinforced concrete structures", Doboku Gakkai Ronbunshu, 1984(350), 23-33. https://doi.org/10.2208/jscej.1984.350_23
- Sharifzadeh, M., Sikinioti-Lock, A. and Shah, N. (2019), "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian process regression", Renewab. Sustainab. Energy Rev., 108, 513-538. https://doi.org/10.1016/j.rser.2019.03.040.
- Siddique, R., Aggarwal, P., Aggarwal, Y. and Gupta, S.M. (2008), "Modeling properties of self-compacting concrete: Support vector machines approach", Comput. Concrete, 5(5), 461-473. https://doi.org/10.12989/cac.2008.5.5.461.
- Sivaramakrishnan, B. (2010), "Non-linear modeling parameters for reinforced concrete columns subjected to seismic loads", Ph.D. Dissertation, University of Texas, Austin, TX, USA.
- Tibshirani, R. (1998), "The lasso method for variable selection in the Cox model", Stat. Med., 16(4), 385-395. https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3.
- Topaloglu, B., Kaya, G.T., Sutcu, F. and Deger, Z.T. (2021), "Machine learning-based assessment of energy behavior of RC shear walls", arXiv:2111.08295. https://doi.org/10.48550/arXiv.2111.08295.
- Yan, Y., Huang, H. and Sun, L. (2022), "Multivariate structural seismic fragility analysis and comparative study based on moment estimation surrogate model and Gaussian copula function", Eng. Struct., 262, 114324. https://doi.org/10.1016/j.engstruct.2022.114324.
- Yilmaz, I., Erik, N.Y. and Kaynar, O. (2010), "Different types of learning algorithms of artificial neural network (ANN) models for prediction of gross calorific value (GCV) of coals", Sci. Res. Essays, 5(16), 2242-2249. https://doi.org/10.5897/SRE.9000355.
- Zhang, H., Cheng, X., Li, Y. and Du, X. (2022), "Prediction of failure modes, strength, and deformation capacity of RC shear walls through machine learning", J. Build. Eng., 50, 104145. https://doi.org/10.1016/j.jobe.2022.104145.