DOI QR코드

DOI QR Code

Numerical investigations on anchor channels under quasi-static and high rate loadings - Case of concrete edge breakout failure

  • Kusum Saini (Department of Civil Engineering, Indian Institute of Technology (IIT) Delhi) ;
  • Akanshu Sharma (Lyles School of Civil Engineering, Purdue University) ;
  • Vasant A. Matsagar (Department of Civil Engineering, Indian Institute of Technology (IIT) Delhi)
  • 투고 : 2022.08.21
  • 심사 : 2023.07.06
  • 발행 : 2023.11.25

초록

Anchor channels are commonly used for façade, tunnel, and structural connections. These connections encounter various types of loadings during their service life, including high rate or impact loading. For anchor channels that are placed close and parallel to an edge and loaded in shear perpendicular to and towards the edge, the failure is often governed by concrete edge breakout. This study investigates the transverse shear behavior of the anchor channels under quasi-static and high rate loadings using a numerical approach (3D finite element analysis) utilizing a rate-sensitive microplane model for concrete as constitutive law. Following the validation of the numerical model against a test performed under quasi-static loading, the rate-sensitive static, and rate-sensitive dynamic analyses are performed for various displacement loading rates varying from moderately high to impact. The increment in resistance due to the high loading rate is evaluated using the dynamic increase factor (DIF). Furthermore, it is shown that the failure mode of the anchor channel changes from global concrete edge failure to local concrete crushing due to the activation of structural inertia at high displacement loading rates. The research outcomes could be valuable for application in various types of connection systems where a high rate of loading is expected.

키워드

과제정보

The authors gratefully acknowledge the Research Grants: Bilateral Doctoral Program by Deutscher Akademischer Austauschdiens (DAAD) to conduct research at the University of Stuttgart, Germany. The authors also thank JORDAHL® for providing financial support for the experiments. The opinions expressed herein are those of the authors and not necessarily of the funding agencies.

참고문헌

  1. Ahmed, L.T. and Braimah, A. (2017), "Behaviour of undercut anchors subjected to high strain rate loading", Proc. Eng., 210, 326-333. https://doi.org/10.1016/j.proeng.2017.11.084.
  2. Al Saeab, L.T.A. (2019), "Finite element modelling of anchorage to concrete systems at different strain rates", Doctoral Dissertation, Carleton University, Ottawa, ON, Canada.
  3. Bazant, Z.P., Adley, M.D., Carol, I., Jirasek, M., Akers, S.A., Rohani, B., Cargile, J.D. and Caner, F.C. (2000a), "Large-strain generalization of microplane model for concrete and application", J. Eng. Mech. ASCE, 126(9), 971-980. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(971).
  4. Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Constr., 16(3), 155-177. https://doi.org/10.1007/BF02486267
  5. Bazant, Z.P. and Oh, B.H. (1986), "Efficient numerical integration on the surface of a sphere", ZAMM J. Appl. Math. Mech., 66(1), 37-49. https://doi.org/10.1002/zamm.19860660108.
  6. Bazant, Z.P. and Prat, P.C. (1988), "Microplane model for brittle-plastic material: I. Theory", J. Eng. Mech., 114(10), 1672-1688. https://doi.org/733-9399/88/0010-1672. 10-1672
  7. Bazant, Z.P., Caner, F.C., Adley, M.D. and Akers, S.A. (2000b), "Fracturing rate effect and creep in microplane model for dynamics", J. Eng. Mech. ASCE, 1126(9), 962-970. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(962).
  8. Bede, N., Ozbolt, J., Sharma, A. and Irhan, B. (2015), "Dynamic fracture of notched plain concrete beams: 3D finite element study", Int. J. Impact Eng., 77, 176-188. https://doi.org/10.1016/j.ijimpeng.2014.11.022.
  9. Belytschko T., Liu, W. K., Moran, M. and Elkhodary, K. (2013), Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, Hoboken, NJ, USA.
  10. Bischoff, P.H. and Perry, S.H. (1991), "Compressive behaviour of concrete at high strain rates", Mater. Struct., 24, 425-450. https://doi.org/10.1007/BF02472016.
  11. Bogdanic, A., Casucci, D. and Ozbolt, J. (2021), "Numerical and experimental investigation of anchor channels subjected to shear load in composite slabs with profiled steel decking", Eng. Struct., 240, 112347. https://doi.org/10.1016/j.engstruct.2021.112347.
  12. Bokor, B., Toth, M. and Sharma, A. (2018), "Fasteners in steel fiber reinforced concrete subjected to increased loading rates", Fibers, 6(4), 93. https://doi.org/10.3390/fib6040093.
  13. Bokor, B. (2021), "Nonlinear spring modelling approach for the evaluation of anchor groups", Doctoral Dissertation, University of Stuttgart, Stuttgart, Germany.
  14. Bokor, B. and Sharma, A. (2021), "Numerical investigations on non-rectangular anchor groups under shear loads applied perpendicular or parallel to an edge", CivilEng, 2(3), 692-711. https://doi.org/10.3390/civileng2030038.
  15. Braimah, A., Contestabile, E. and Guilbeault, R. (2009), "Behaviour of adhesive steel anchors under impulse-type loading", Can. J. Civil Eng., 36(11), 1835-1847. https://doi.org/10.1139/L09-084.
  16. Braimah, A., Guilbeault, R. and Contestabile, E. (2014), "Strain rate behaviour of adhesive anchors in masonry", Eng. Struct., 67, 96-108. https://doi.org/10.1016/j.engstruct.2014.02.018.
  17. Dilger, W.H., Koch, R. and Kowalczyk, R. (1984), "Ductility of plain and confined concrete under different strain rates", ACI J. Proc., 81(1), 73-81. https://doi.org/10.14359/10649.
  18. Eibl, J. and Keintzel, E. (1989), "Verhalten von dubeln unter hoher stoss und wechselbeanspruchung (Behavior of anchors under high speed impact and reversed cyclic loads)", Institut fur Massivbau und Baustofftechnologie, Universitat Karlsruhe, Karlsruhe, Germany.
  19. Eligehausen, R., Mallee, R. and Silva, J.F. (2006), Anchorage in Concrete Construction, Ernst & Sohn GmbH & Co., Berlin, Germany.
  20. EN 1992-4 (2018), Eurocode 2: Design of Concrete Structures - Part 4: Design of Fastenings for Use in Concrete, European Committee for Standardization, Brussels, Belgium. 
  21. ETA (2018), Europaische Technische Bewertung: ETA-09/0338, JORDAHL GmbH, Deutschland, German. https://jordahlgroup.com/en/products/fastening-technology/jordahl-anchorchannel-jta-w
  22. FEMAP®, Finite Element Modeling and Postprocessing, Siemens PLM Software, Plano, TX, USA.
  23. Fujikake, K., Nakayama, J., Sato, H., Mindess, S. and Ishibashi, T. (2003), "Chemically bonded anchors subjected to rapid pullout loading", ACI Mater. J., 100(3), 246-252. https://doi.org/10.14359/12626.
  24. Hoehler, M. (2006), "Behaviour and testing of fastenings to concrete for use in seismic application", Doctoral Dissertation, Institute of Construction Materials, University of Stuttgart, Stuttgart, Germany.
  25. Jebara, K., Ozbolt, J. and Sharma, A. (2020), "Pryout capacity of headed stud anchor groups with stiff base plate: 3D finite element analysis", Struct. Concrete, 21(3), 905-916. https://doi.org/10.1002/suco.201900241.
  26. Karihaloo, B.L. (1995), Fracture Mechanics and Structural Concrete. Concrete Design and Construction Series, Longman Pub Group, Harlow, UK.
  27. Klingner, R.E. and Graves, H.L. (1994), "Anchor bolt behavior and strength during earthquakes", Report NUREG/CP-0139, US Nuclear Regulatory Commission (NRC), Washington, D.C., USA.
  28. Konertz, D., Kocur, G.K., Hausler, F. and Mark, P. (2021), "Longitudinal shear transmission of anchor channels into concrete-An experimental approach", Struct. Concrete, 22(2), 1072-1084. https://doi.org/10.1002/suco.202000133.
  29. Larcher, M. (2009), "Development of discrete cracks in concrete loaded by shock waves", Int. J. Impact Eng., 36(5), 700-710. https://doi.org/10.1016/j.ijimpeng.2008.10.003.
  30. Mahrenholtz, C. (2017), "Suitability of anchor channels with channel bolts for use in nuclear power plants", Proceedings of 24th Conference on Structural Mechanics in Reactor Technology (SMiRT 24), Busan, Korea, August.
  31. Mahrenholtz, C. and Sharma, A. (2020), "Qualification and design of anchor channels with channel bolts according to the new EN 1992-4 and ACI 318", Struct. Concrete, 21(1), 94-106. https://doi.org/10.1002/suco.201800341.
  32. Mahrenholtz, C., Ayoubi, M., Muller, S. and Bachschmid, S. (2019), "Tension and shear performance of anchor channels with channel bolts cast in fibre reinforced concrete (FRC)", Mater. Sci. Eng., 615(1), 012089. https://doi.org/10.1088/1757-899X/615/1/012089.
  33. Malvar, L.J. and Ross, C.A. (1998), "Review of strain rate effects for concrete in tension", ACI Mater. J., 95, 735-739.
  34. MASA®, MAcroscopic Space Analysis. Software by IWB & Ozbolt, University of Stuttgart, Stuttgart, Germany.
  35. Mihashi, H. and Wittmann, F. H. (1980), Stochastic Approach to Study the Influence of Rate of Loading on Strength of Concrete, Stevin-Laboratory of the Department of Civil Engineering of the Delft University of Technology, Delft, Netherlands and I.B.B.C. Institute TNO for Building Materials and Building Structures, Rijswijk (ZH), Netherlands
  36. Ozbolt, J. and Reinhardt, H.W. (2005), "Rate dependent fracture of notched plain concrete beams", Proceedings of the 7th International Conference CONCREEP-7, Nantes, France, September.
  37. Ozbolt, J. and Sharma, A. (2011), "Numerical simulation of reinforced concrete beams with different shear reinforcements under dynamic impact loads", Int. J. Impact Eng., 38(12), 940-950. https://doi.org/10.1016/j.ijimpeng.2011.08.003.
  38. Ozbolt, J. and Sharma, A. (2012), "Numerical simulation of dynamic fracture of concrete through uniaxial tension and L-specimen", Eng. Fract. Mech., 85, 88-102. https://doi.org/10.1016/j.engfracmech.2012.02.013.
  39. Ozbolt, J., Bede, N., Sharma, A. and Mayer, U. (2015), "Dynamic fracture of concrete L-specimen: Experimental and numerical study", Eng. Fract. Mech., 148, 27-41. https://doi.org/10.1016/j.engfracmech.2015.09.002.
  40. Ozbolt, J., Bosnjak, J. and Sola, E. (2013), "Dynamic fracture of concrete compact tension specimen: Experimental and numerical study", Int. J. Solid. Struct., 50(25-26), 4270-4278. https://doi.org/10.1016/j.ijsolstr.2013.08.030.
  41. Ozbolt, J., Li, Y. and Kozar, I. (2001), "Microplane model for concrete with relaxed kinematic constraint", Int. J. Solid. Struct., 38(16), 2683-2711. https://doi.org/10.1016/S0020-7683(00)00177-3.
  42. Ozbolt, J., Rah, K.K. and Mestrovic, D. (2006), "Influence of loading rate on concrete cone failure", Int. J. Fract., 139(2), 239-252. https://doi.org/10.1007/s10704-006-0041-3.
  43. Ozbolt, J., Sharma, A. and Reinhardt, H.W. (2011), "Dynamic fracture of concrete-compact tension specimen", International J. Solid. Struct., 48(10), 1534-1543. https://doi.org/10.1016/j.ijsolstr.2011.01.033.
  44. Ozbolt, J., Sharma, A., Irhan, B. and Sola, E. (2014), "Tensile behavior of concrete under high loading rates", Int. J. Impact Eng., 69, 55-68. https://doi.org/10.1016/j.ijimpeng.2014.02.005.
  45. Pedersen, R.R., Simone, A., Stroeven, M. and Sluys, L.J. (2007), "Mesoscopic modelling of concrete under impact", 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures-FRAMCOS VI, Catania, Italy, June.
  46. Pedersen, R.R. (2009), "Computational modelling of dynamic failure of cementitious materials", Dissertation, TU Delft, Netherlands.
  47. Potthoff, M. (2008), "Tragverhalten und bemessung von ankerschienen unter querbelastung", Doctoral Dissertation, University of Stuttgart, Stuttgart, Germany.
  48. Ruta, D. (2018), "Numerical and experimental study of concrete structures exposed to impact and fire", Doctoral Dissertation, University of Stuttgart, Stuttgart, Germany.
  49. Schmid, K. (2010), "Tragverhalten und bemessung von befestigungen am bauteilrand mit ruckhangebewehrung unter querlasten rechtwinklig zum rand", Doctoral Dissertation, Universitat Stuttgart, Stuttgart, Germany.
  50. Schmidt, T. (2017), "Tragverhalten von ankerschienen unter querlast in schienenlangsrichtung", Doctoral Dissertation, Universitat Stuttgart, Stuttgart, Germany.
  51. Schuler, H., Mayrhofer, C. and Thoma, K. (2006), "Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates", Int. J. Impact Eng., 32(10), 1635-1650. https://doi.org/10.1016/j.ijimpeng.2005.01.010.
  52. Sharma, A. and Ozbolt, J. (2014), "Influence of high loading rates on behavior of reinforced concrete beams with different aspect ratios-A numerical study", Eng. Struct., 79, 297-308. https://doi.org/10.1016/j.engstruct.2014.08.025.
  53. Toth M., Sharma A. and Hofmann J. (2017), "Influence of impact preloading on the residual concrete cone capacity", ConSC 2017: Proceedings of the 3rd International Symposium on Connections between Steel and Concrete, Stuttgart, Germany, September.
  54. Weerheijm, J. and Van Doormaal, J.C.A.M. (2007), "Tensile failure of concrete at high loading rates: New test data on strength and fracture energy from instrumented spalling tests", Int. J. Impact Eng., 34(3), 609-626. https://doi.org/10.1016/j.ijimpeng.2006.01.005.