DOI QR코드

DOI QR Code

Optimal design of a wind turbine supporting system accounting for soil-structure interaction

  • Ali I. Karakas (Department of Civil Engineering, Karadeniz Technical University) ;
  • Ayse T. Daloglua (Department of Civil Engineering, Karadeniz Technical University)
  • 투고 : 2023.08.01
  • 심사 : 2023.10.17
  • 발행 : 2023.11.10

초록

This study examines how the interaction between soil and a wind turbine's supporting system affects the optimal design. The supporting system resting on an elastic soil foundation consists of a steel conical tower and a concrete circular raft foundation, and it is subjected to wind loads. The material cost of the supporting system is aimed to be minimized employing various metaheuristic optimization algorithms including teaching-learning based optimization (TLBO). To include the influence of the soil in the optimization process, modified Vlasov and Gazetas elastic soil models are integrated into the optimization algorithms using the application programing interface (API) feature of the structural analysis program providing two-way data flow. As far as the optimal designs are considered, the best minimum cost design is achieved for the TLBO algorithm, and the modified Vlasov model makes the design economical compared with the simple Gazetas and infinitely rigid soil models. Especially, the optimum design dimensions of the raft foundation extremely reduce when the Vlasov realistic soil reactions are included in the optimum analysis. Additionally, as the designated design wind speed is decreased, the beneficial impact of soil interaction on the optimum material cost diminishes.

키워드

참고문헌

  1. AISC 360-05 (2005), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, USA.
  2. AlHamaydeh, M. and Hussain, S. (2011), "Optimized frequency-based foundation design for wind turbine towers utilizing soil-structure interaction", J. Frank. Inst., 348, 1470-1487. https://doi.org/10.1016/j.jfranklin.2010.04.013.
  3. Al-Sanad, S., Parol, J., Wang, L. and Kolios, A. (2023), "Design optimisation of wind turbine towers with reliability-based calibration of partial safety factors", Energy Report., 9, 2548-2556. https://doi.org/10.1016/j.egyr.2023.01.090.
  4. ASCE 7-05 (2005), Minimum Design Loads for Buildings and other Structures-Chapter 6: Wind Loads, American Society of Civil Engineers, USA.
  5. Bazeos, N., Hatzigeorgiou, G.D., Hondros, I.D., Karamaneas, H., Karabalis, D.L. and Beskos, D.E. (2002), "Static, seismic, and stability analyses of a prototype wind turbine steel tower", Eng. Struct., 24(8), 1015-1025. https://doi.org/10.1016/S0141-0296(02)00021-4.
  6. Bowles, J.E. (1996), Foundation Analysis and Design, McGraw-Hill Companies, NewYork, USA.
  7. Bozyigit, B., Bozyigit, I. and Prendergast, L.J. (2023), "Analytical approach for seismic analysis of onshore wind turbines considering soil-structure interaction", Struct., 51, 226-241. https://doi.org/10.1016/j.istruc.2023.03.048.
  8. Camp, C.V. and Farshchin, M. (2014), "Design of space trusses using modified teaching-learning based optimization", Eng. Struct., 62-63, 87-97. https://doi.org/10.1016/j.engstruct.2014.01.020.
  9. Gazetas, G. (1983), "Analysis of machine foundation vibrations: State of the art", Soil Dyn. Earthq. Eng., 2(1), 2-42. https://doi.org/10.1016/0261-7277(83)90025-6.
  10. Geem, Z.W., Joong, H.K. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search", Simul., 76(2), 60-68. https://doi.org/10.1177/003754970107600201.
  11. Gravett, D.Z. and Markou, G. (2021), "State-of-the-art investigation of wind turbine structures founded on soft clay by considering the soil-foundation-structure interaction phenomenon-Optimization of battered RC piles", Eng. Struct., 235, 112013. https://doi.org/10.1016/j.engstruct.2021.112013.
  12. Grzywinski, M. (2022), "Optimization of spatial truss towers based on rao algorithms", Struct. Eng. Mech., 81(3), 367-378. https://doi.org/10.12989/sem.2022.81.3.367.
  13. Hammam, A.H. and Eliwa, M. (2013), "Comparison between results of dynamic & static moduli of soil determined by different methods", HBRC J., 9(2), 144-149. https://doi.org/10.1016/j.hbrcj.2013.05.002.
  14. Hu, Y., Yang, J., Baniotopoulos, C.C. and Wang, F. (2020), "A comparison of structural performance enhancement of horizontally and vertically stiffened tubular steel wind turbine towers", Struct. Eng. Mech., 73(5), 487-500. https://doi.org/10.12989/sem.2020.73.5.487.
  15. IEC 61400-1 (2005), Wind Turbines-Part I: Design Requirements, International Electrotechnical Commission, Geneva, Switzerland.
  16. IRENA (2018), Renewable Power Generation Costs in 2017, International Renewable Energy Agency, Abu Dhabi, UAE.
  17. Kamel, A., Dammak, K., El Hami, A., Ben Jdidia, M., Hammami, L. and Haddar, M. (2022), "A modified hybrid method for a reliability-based design optimization applied to an offshore wind turbine", Mech. Adv. Mater. Struct., 29(9), 1229-1242. https://doi.org/10.1080/15376494.2020.1811927.
  18. Karakas, A.I., Ozgan, K. and Daloglu, A.T. (2016), "A consistent fem-Vlasov model for hyperbolic cooling towers on layered soil under unsymmetrical wind load", Wind Struct., 22(6), 617-633. https://doi.org/10.12989/was.2016.22.6.617.
  19. Kumaravel, R. and Krishnamoorthy, A. (2020), "Comparative structural analysis of lattice hybrid and tubular wind turbine towers", Wind Struct., 30(1), 29-35. https://doi.org/10.12989/was.2020.30.1.029.
  20. Lagaros, N.D. and Karlaftis, M.G. (2015), "Life-cycle cost structural design optimization of steel wind towers", Comput. Struct., 174, 122-132. https://doi.org/10.1016/j.compstruc.2015.09.013.
  21. LaNier, M.W. (2005), "LWST phase I project conceptual design study: Evaluation of design and construction approaches for economical hybrid steel/concrete wind turbine towers", Report No. NREL/SR-500-36777, National Renewable Energy Laboratory Midwest Research Institute, USA.
  22. Lezgy-Nazargah, M., Mamazizi, A. and Khosravi, H. (2022), "Analysis of shallow footings rested on tensionless foundations using a mixed finite element model", Struct. Eng. Mech., 81(3), 79-394. https://doi.org/10.12989/sem.2022.81.3.379.
  23. MATLAB (2023), The Language of Technical Computing, The MathWorks Inc., Massachusetts, USA.
  24. Negm, H.M. and Maalawi, K.Y. (2000), "Structural design optimization of wind turbine towers", Comput. Struct., 74(6), 649-666. https://doi.org/10.1016/S0045-7949(99)00079-6.
  25. Nicholson, J.C. (2011), "Design of wind turbine tower and foundation systems: Optimization approach", Master Dissertation, University of Iowa, USA.
  26. Padron, L.A., Carbonari, S., Dezi, F., Morici, M., Bordon, J.D.R. and Leoni, G. (2022), "Seismic response of large offshore wind turbines on monopole foundations including dynamic soil-structure interaction", Ocean Eng., 257, 111653. https://doi.org/10.1016/j.oceaneng.2022.111653.
  27. Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning based optimization: A novel method for constrained mechanical design optimization problems", Comput. Aid. Des., 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015.
  28. SAP2000 (2021), Structural Analysis and Design, Computers and Structures Inc., USA.
  29. Sapountzakis, E.J., Dikaros, I.C., Kampitsis, A.E. and Koroneou, A.D. (2015), "Nonlinear response of wind turbines under wind and seismic excitations with soil-structure interaction", J. Comput. Nonlin. Dyn., 10, 041007. https://doi.org/10.1115/1.4027697.
  30. Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures: Fundamentals and Applications to Design, Wiley, USA.
  31. Storn, R. and Price, K. (1997), "Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces", J. Glob. Optim., 11, 341-359. https://doi.org/10.1023/A:1008202821328.
  32. Uys, P.E., Farkas, J., Jarmai, K. and Tonder, F. (2007), "Optimization of a steel tower for a wind turbine structure", Eng. Struct., 29(7), 1337-1342. https://doi.org/10.1016/j.engstruct.2006.08.011.
  33. Vallabhan, C.V.G. and Das, Y.C. (1988), "Parametric study of beams on elastic foundations", J. Eng. Mech., 114(12), 2072-2082. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2072).
  34. VGB Guideline (2005), Structural Design of Cooling Towers, VGB Technical Committee, Essen, Germany.
  35. Vlasov, V.Z. and Leont'ev U.N. (1966), Beams, Plates and Shells on Elastic Foundations, Israel Program for Scientific Translations, Jerusalem, Israel.
  36. Wu, X., Zhang, X., Zhang, Q., Zhang, D., Yang, X., Qiu, F., Park, S. and Kang, T.H.K. (2022), "Design and behavior of 160 m-tall post-tensioned precast concrete-steel hybrid wind turbine tower", Steel Compos. Struct., 44(3), 407-421. https://doi.org/10.12989/scs.2022.44.3.407.
  37. Zheng, Y., Zhang, L., Dong, F. and Dong, B. (2020), "Multi-objective structural optimization of wind turbine tower using nondominated sorting genetic algorithm", J. Beijing Inst. Technol., 29(3), 417-424. https://doi.org/10.15918/j.jbit1004-0579.20050.
  38. Zyl, W.V. and Zijl, G.V. (2015), "Dynamic behaviour of normally reinforced concrete wind turbine support structures", J. South Afr. Inst. Civil Eng., 57(4), 38-44. http://doi.org/10.17159/2309-8775/2015/v57n4a5.