References
- AISC 360-05 (2005), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, USA.
- AlHamaydeh, M. and Hussain, S. (2011), "Optimized frequency-based foundation design for wind turbine towers utilizing soil-structure interaction", J. Frank. Inst., 348, 1470-1487. https://doi.org/10.1016/j.jfranklin.2010.04.013.
- Al-Sanad, S., Parol, J., Wang, L. and Kolios, A. (2023), "Design optimisation of wind turbine towers with reliability-based calibration of partial safety factors", Energy Report., 9, 2548-2556. https://doi.org/10.1016/j.egyr.2023.01.090.
- ASCE 7-05 (2005), Minimum Design Loads for Buildings and other Structures-Chapter 6: Wind Loads, American Society of Civil Engineers, USA.
- Bazeos, N., Hatzigeorgiou, G.D., Hondros, I.D., Karamaneas, H., Karabalis, D.L. and Beskos, D.E. (2002), "Static, seismic, and stability analyses of a prototype wind turbine steel tower", Eng. Struct., 24(8), 1015-1025. https://doi.org/10.1016/S0141-0296(02)00021-4.
- Bowles, J.E. (1996), Foundation Analysis and Design, McGraw-Hill Companies, NewYork, USA.
- Bozyigit, B., Bozyigit, I. and Prendergast, L.J. (2023), "Analytical approach for seismic analysis of onshore wind turbines considering soil-structure interaction", Struct., 51, 226-241. https://doi.org/10.1016/j.istruc.2023.03.048.
- Camp, C.V. and Farshchin, M. (2014), "Design of space trusses using modified teaching-learning based optimization", Eng. Struct., 62-63, 87-97. https://doi.org/10.1016/j.engstruct.2014.01.020.
- Gazetas, G. (1983), "Analysis of machine foundation vibrations: State of the art", Soil Dyn. Earthq. Eng., 2(1), 2-42. https://doi.org/10.1016/0261-7277(83)90025-6.
- Geem, Z.W., Joong, H.K. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search", Simul., 76(2), 60-68. https://doi.org/10.1177/003754970107600201.
- Gravett, D.Z. and Markou, G. (2021), "State-of-the-art investigation of wind turbine structures founded on soft clay by considering the soil-foundation-structure interaction phenomenon-Optimization of battered RC piles", Eng. Struct., 235, 112013. https://doi.org/10.1016/j.engstruct.2021.112013.
- Grzywinski, M. (2022), "Optimization of spatial truss towers based on rao algorithms", Struct. Eng. Mech., 81(3), 367-378. https://doi.org/10.12989/sem.2022.81.3.367.
- Hammam, A.H. and Eliwa, M. (2013), "Comparison between results of dynamic & static moduli of soil determined by different methods", HBRC J., 9(2), 144-149. https://doi.org/10.1016/j.hbrcj.2013.05.002.
- Hu, Y., Yang, J., Baniotopoulos, C.C. and Wang, F. (2020), "A comparison of structural performance enhancement of horizontally and vertically stiffened tubular steel wind turbine towers", Struct. Eng. Mech., 73(5), 487-500. https://doi.org/10.12989/sem.2020.73.5.487.
- IEC 61400-1 (2005), Wind Turbines-Part I: Design Requirements, International Electrotechnical Commission, Geneva, Switzerland.
- IRENA (2018), Renewable Power Generation Costs in 2017, International Renewable Energy Agency, Abu Dhabi, UAE.
- Kamel, A., Dammak, K., El Hami, A., Ben Jdidia, M., Hammami, L. and Haddar, M. (2022), "A modified hybrid method for a reliability-based design optimization applied to an offshore wind turbine", Mech. Adv. Mater. Struct., 29(9), 1229-1242. https://doi.org/10.1080/15376494.2020.1811927.
- Karakas, A.I., Ozgan, K. and Daloglu, A.T. (2016), "A consistent fem-Vlasov model for hyperbolic cooling towers on layered soil under unsymmetrical wind load", Wind Struct., 22(6), 617-633. https://doi.org/10.12989/was.2016.22.6.617.
- Kumaravel, R. and Krishnamoorthy, A. (2020), "Comparative structural analysis of lattice hybrid and tubular wind turbine towers", Wind Struct., 30(1), 29-35. https://doi.org/10.12989/was.2020.30.1.029.
- Lagaros, N.D. and Karlaftis, M.G. (2015), "Life-cycle cost structural design optimization of steel wind towers", Comput. Struct., 174, 122-132. https://doi.org/10.1016/j.compstruc.2015.09.013.
- LaNier, M.W. (2005), "LWST phase I project conceptual design study: Evaluation of design and construction approaches for economical hybrid steel/concrete wind turbine towers", Report No. NREL/SR-500-36777, National Renewable Energy Laboratory Midwest Research Institute, USA.
- Lezgy-Nazargah, M., Mamazizi, A. and Khosravi, H. (2022), "Analysis of shallow footings rested on tensionless foundations using a mixed finite element model", Struct. Eng. Mech., 81(3), 79-394. https://doi.org/10.12989/sem.2022.81.3.379.
- MATLAB (2023), The Language of Technical Computing, The MathWorks Inc., Massachusetts, USA.
- Negm, H.M. and Maalawi, K.Y. (2000), "Structural design optimization of wind turbine towers", Comput. Struct., 74(6), 649-666. https://doi.org/10.1016/S0045-7949(99)00079-6.
- Nicholson, J.C. (2011), "Design of wind turbine tower and foundation systems: Optimization approach", Master Dissertation, University of Iowa, USA.
- Padron, L.A., Carbonari, S., Dezi, F., Morici, M., Bordon, J.D.R. and Leoni, G. (2022), "Seismic response of large offshore wind turbines on monopole foundations including dynamic soil-structure interaction", Ocean Eng., 257, 111653. https://doi.org/10.1016/j.oceaneng.2022.111653.
- Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning based optimization: A novel method for constrained mechanical design optimization problems", Comput. Aid. Des., 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015.
- SAP2000 (2021), Structural Analysis and Design, Computers and Structures Inc., USA.
- Sapountzakis, E.J., Dikaros, I.C., Kampitsis, A.E. and Koroneou, A.D. (2015), "Nonlinear response of wind turbines under wind and seismic excitations with soil-structure interaction", J. Comput. Nonlin. Dyn., 10, 041007. https://doi.org/10.1115/1.4027697.
- Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures: Fundamentals and Applications to Design, Wiley, USA.
- Storn, R. and Price, K. (1997), "Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces", J. Glob. Optim., 11, 341-359. https://doi.org/10.1023/A:1008202821328.
- Uys, P.E., Farkas, J., Jarmai, K. and Tonder, F. (2007), "Optimization of a steel tower for a wind turbine structure", Eng. Struct., 29(7), 1337-1342. https://doi.org/10.1016/j.engstruct.2006.08.011.
- Vallabhan, C.V.G. and Das, Y.C. (1988), "Parametric study of beams on elastic foundations", J. Eng. Mech., 114(12), 2072-2082. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2072).
- VGB Guideline (2005), Structural Design of Cooling Towers, VGB Technical Committee, Essen, Germany.
- Vlasov, V.Z. and Leont'ev U.N. (1966), Beams, Plates and Shells on Elastic Foundations, Israel Program for Scientific Translations, Jerusalem, Israel.
- Wu, X., Zhang, X., Zhang, Q., Zhang, D., Yang, X., Qiu, F., Park, S. and Kang, T.H.K. (2022), "Design and behavior of 160 m-tall post-tensioned precast concrete-steel hybrid wind turbine tower", Steel Compos. Struct., 44(3), 407-421. https://doi.org/10.12989/scs.2022.44.3.407.
- Zheng, Y., Zhang, L., Dong, F. and Dong, B. (2020), "Multi-objective structural optimization of wind turbine tower using nondominated sorting genetic algorithm", J. Beijing Inst. Technol., 29(3), 417-424. https://doi.org/10.15918/j.jbit1004-0579.20050.
- Zyl, W.V. and Zijl, G.V. (2015), "Dynamic behaviour of normally reinforced concrete wind turbine support structures", J. South Afr. Inst. Civil Eng., 57(4), 38-44. http://doi.org/10.17159/2309-8775/2015/v57n4a5.