DOI QR코드

DOI QR Code

An adaptive meshfree RPIM with improved shape parameter to simulate the mixing of a thermoviscoplastic material

  • Zouhair Saffah (LIMAT Laboratory, Faculty of Sciences of Ben M'Sik, Hassan II University of Casablanca) ;
  • Mohammed Amdi (Faculty of Sciences and Technology, University of Lille) ;
  • Abdelaziz Timesli (AICSE Laboratory, National Higher School of Arts and Crafts of Casablanca, Hassan II University of Casablanca) ;
  • Badr Abou El Majd (Faculty of Sciences and Technology, University of Lille) ;
  • Hassane Lahmam (LIMAT Laboratory, Faculty of Sciences of Ben M'Sik, Hassan II University of Casablanca)
  • Received : 2022.10.20
  • Accepted : 2023.10.11
  • Published : 2023.11.10

Abstract

The Radial Point Interpolation Method (RPIM) has been proposed to overcome the difficulties associated with the use of the Radial Basis Functions (RBFs). The RPIM has the following properties: Simple implementation in terms of boundary conditions as in the Finite Element Method (FEM). A less expensive CPU time compared to other collocation meshless methods such as the Moving Least Square (MLS) collocation method. In this work, we propose an adaptive high-order numerical algorithm based on RPIM to simulate the thermoviscoplastic behavior of a material mixing observed in the Friction Stir Welding (FSW) process. The proposed adaptive meshfree RPIM algorithm adapts well to the geometric and physical data by choosing a good shape parameter with a good precision. Our numerical approach combines the RPIM and the Asymptotic Numerical Method (ANM). A numerical procedure is also proposed in this work to automatically determine an improved shape parameter for the RBFs. The efficiency of the proposed algorithm is analyzed in comparison with an iterative algorithm.

Keywords

Acknowledgement

The entire authors of this research are utterly grateful to the Arab Fund for Economic and Social Development (AFESD) for financial support for this work.

References

  1. Alfaro, I., Fratini, L., Cueto, E., Chinesta, F. and Micari, F. (2007), "Meshless simulation of friction stir welding", AIP Conf. Proc., 908, 203-208. https://doi.org/10.1007/s12289-008-0206-x.
  2. Alfaro, I., Racineux, G., Poitou, A., Cueto, E. and Chinesta, F. (2009), "Numerical simulation of friction stir welding by natural element", Int. J. Mater. Form., 2, 225. https://doi.org/10.1007/s12289-009-0406-z.
  3. Allen, M.J., Tung, V.C. and Kaner, R.B. (2010), "Honeycomb carbon: A review of graphene", Chem. Rev., 110, 132-145. https://doi.org/10.1021/cr900070d.
  4. Askary, A., Silling, S., London, B. and Mahoney, M. (2001), "Modeling and analysis of friction stir welding processes", Friction Stir Welding and Processing, 43-54.
  5. Assidi, M., Fourment, L., Guerdoux, S. and Nelson, T. (2010), "Friction model for friction stir welding process simulation: Calibrations from welding experiments", Int. J. Mach. Tool. Manuf., 50(2), 143-155. https://doi.org/10.1016/j.ijmachtools.
  6. Bastier, A., Maitournam, M.H., Dang Van, K. and Roger, F. (2006), "Steady state thermomechanical modelling of friction stir welding", Sci. Technol. Weld. Join., 11, 278-288. https://doi.org/10.1179/174329306X102093.
  7. Boussetta, R., Coupez, T. and Fourment, L. (2006), "Adaptive remeshing based on a posteriori error estimation for forging simulation", Comput. Meth. Appl. Mech. Eng., 195(48-49), 6626-6645. https://doi.org/10.1016/j.cma.2005.06.029.
  8. Buffa, G. and Fratini, L. (2004), "Friction stir welding of AA6082-T6 sheets: Numerical analysis and experimental tests", AIP Conf. Proc., 712(1), 1224. https://doi.org/10.1063/1.1766696.
  9. Buffa, G., Hu, J., Shivpuri, R. and Fratini, L. (2006), "A continuum based fem model for friction stir welding model development", Mater. Sci. Eng., 419, 389-396. https://doi.org/10.1016/j.msea.2005.09.040.
  10. Buffa, G., Hua, J., Shivpuri, R. and Fratini, L. (2006), "A continuum based fem model for friction stir welding model development", Mater. Sci. Eng. A, 419, 389-396, https://doi.org/10.1016/j.msea.2005.09.040.
  11. Cho, J.H., Boyce, D.E. and Dawson, P.R. (2007), "Modelling of strain hardening during friction stir welding of stainless steel", Model. Simul. Mat. Sci. Eng., 15, 469-486. https://doi.org/10.1088/0965-0393/15/5/007.
  12. Cochelin, B. (1994), "A path-following technique via an asymptotic-numerical method", Comput. Struct., 53(5), 1181-1192. https://doi.org/10.1016/0045-7949(94)90165-1.
  13. Colegrove, P. and Shercliff, H.R. (2004), "Development of Trivex friction stir welding tool Part 2, Three dimensional flow modelling", Sci. Technol. Weld. Join, 8(5), 352-361. https://doi.org/10.1179/136217104225021661.
  14. El Kadmiri, R., Belaasilia, Y., Timesli, A. and Kadiri, M.S. (2021a), "A meshfree method based on weak-strong form for structural analysis", Struct. Eng. Mech., 78(6), 651-664. https://doi.org/10.12989/sem.2021.78.6.651.
  15. El Kadmiri, R., Belaasilia, Y., Timesli, A. and Kadiri, M.S. (2021b), "A coupled Meshless-FEM method based on strong form of Radial Point Interpolation Method (RPIM)", J. Phys. Conf. Ser., 1743(1), 012039. https://doi.org/10.1088/1742-6596/1743/1/012039.
  16. El Kadmiri, R., Belaasilia, Y., Timesli, A. and Kadiri, M.S. (2022), "A hybrid algorithm using the FEM-MESHLESS method to solve nonlinear structural problems", Eng. Anal. Bound. Elem., 140, 531-543. https://doi.org/10.1016/j.enganabound.2022.04.018.
  17. Feng, S.Z., Cui, X.Y., Chen, F., Liu, S.Z. and Meng, D.Y. (2016), "An edge/face-based smoothed radial point interpolation method for static analysis of structures", Eng. Anal. Bound. Elem., 68, 1-10. https://doi.org/10.1016/j.enganabound.2016.03.016.
  18. Feulvarch, E., Gooroochur, Y., Boitout, F. and Bergheau, J.M. (2006), "3D modelling of thermofluid flow in friction stir welding", Trends in Welding Research Procedings, 261-266.
  19. Gallais, C., Denquin, A., Pic, A., Simar, A., Pardoen, T. and Brechet, Y. (2004), "Modelling the relationship between process parameters, microstructural evolutions and mechanical behaviour in a friction stir welded 6XXX aluminium alloy", Proceedings of the 5th International Symposium on Friction Stir Welding, Metz, France.
  20. Guedoiri, A., Moufki, A., Favier, V. and Zahrouni, H. (2011), "An analysis of boundary condition effects on the thermomechanical modeling of the FSW process", AIP Conf. Proc., 1315, 911-916. https://doi.org/10.1063/1.3552568.
  21. Guerdoux, S. and Fourment, L. (2009), "A 3D numerical simulation of different phases of friction stir welding", Model. Simul. Mater. Sci. Eng., 17(7), 075001. https://doi.org/10.1088/0965-0393/17/7/075001.
  22. Jacquin, D., de Meester, B., Simar, A., Deloison, D., Montheillet, F. and Desrayaud, C. (2011), "A simple Eulerian thermomechanical modeling of friction stir welding", J. Mater. Proc. Technol., 211, 57-65. https://doi.org/10.1016/j.jmatprotec.2010.08.016.
  23. Kazemi, Z., Hermatiyan, M. and Vaghefi, R. (2017), "Meshfree radial poin interpolation method for analysis of Viscoplastic problems", Eng. Anal. Bound. Elem., 82, 172-184. https://doi.org/10.1016/j.enganabound.2017.06.012.
  24. Liu, G.R., Yan, L., Wang, J.G. and Gu Y.T. (2002), "Point interpolation method based on local residual formulation using radial basis functions", Struct. Eng. Mech., 14(6), 713-732. https://doi.org/10.12989/sem.2002.14.6.713.
  25. Liu, G.R., Zhang, G.Y., Gu, Y.T. and Wang, Y.Y. (2005), "A meshfree radial point interpolation method (RPIM) for three-dimensional solids", Comput. Mech., 36, 421-430. https://doi.org/10.1007/s00466-005-0657-6.
  26. Lorrain, O., Serri, J., Favier, V., Zahrouni, H. and El Hadrouz, M. (2009), "A contribution to a critical review of FSW numerical simulation", J. Mech. Mater. Struct., 4(2), 351-369. https://doi.org/10.2140/jomms.2009.4.351.
  27. Luo, X.B., Li, D.M., Liu, C.L. and Pan, J.H. (2022), "Buckling analysis of variable stiffness composite plates with elliptical cutouts using an efficient RPIM based on naturally stabilized nodal integration scheme", Compos. Struct., 302, 116243. https://doi.org/10.1016/j.compstruct.2022.116243.
  28. Mesmoudi, S., Timesli, A., Braikat, B., Lahmam, H. and Zahrouni, H. (2017), "A 2D mechanical-thermal coupled model to simulate material mixing observed in friction stir welding process", Eng. Comput., 33(4), 885-895. https://doi.org/10.1007/s00366-017-0504-3.
  29. Palm, F., Henneboehle, U. and Erofeev, V. (2004), "Improved verification of FSW-process modelling relating to the origin of material plasticity", Proceedings of the 5th International Symposium on Friction Stir Welding, Metz, France.
  30. Qian, Y.C., Yang, Y.R., Liu, B., Kong, L.H. and Li, D.M. (2023), "Interpolating meshless methods for 3D elastic problems", Int. J. Comput. Meth., 20(1), 2250035. https://doi.org/10.1142/S0219876222500359.
  31. Rossi, R. and Alves, M.K. (2005), "An h-adaptive modified element-free Galerkin method", Eur. J. Mech. A Solid., 24(5), 782-799. https://doi.org/10.1016/j.euromechsol.2005.03.010.
  32. Roy, B.S., Chaudhuri, A.S. and Saha, S.C. (2012), "On the issues of asymmetry observed in heat transfer & material flow in friction stir welding", Adv. Mater. Res., 622-623, 289-293. https://doi.org/10.4028/www.scientific.net/AMR.622-623.289.
  33. Saffah, Z., Hassouna, S., Timesli, A., Azouani, A. and Lahmam, H. (2021), "RBF collocation path-following approach: Optimal choice for shape parameter based on genetic algorithm", Math. Model. Comput., 8(4), 770-782. https://doi.org/10.23939/mmc2021.04.770.
  34. Saffah, Z., Timesli, A., Lahmam, H., Azouani, A. and Amdi, M. (2021), "New collocation path-following approach for theoptimal shape parameter using Kernel method", SN Appl. Sci., 3, 249. https://doi.org/10.1007/s42452-021-04231-1.
  35. Saitta, S., Luciano, R., Vescovini, R., Fantuzzi, N. and Fabbrocino, F. (2022), "Optimization of a radial point interpolation meshless strategy for strain gradient nanoplates", Eng. Anal. Bound. Elem., 140, 70-78. https://doi.org/10.1016/j.enganabound.2022.03.026.
  36. Song, M. and Kovacevic, R. (2003), "Numerical and experimental study of the heat transfer process in friction stir welding", Proc. Inst. Mech. Eng. B: J. Eng. Manuf., 217(1), 73-85. https://doi.org/10.1243/095440503762502297.
  37. Taheri-Behrooz, F., Aliha, M.R.M., Maroofi, M. and Hadizadeh, V. (2018), "Residual stresses measurement in the butt joint welded metals using FSW and TIG methods", Steel Compos. Struct., 28(6), 759-766. https://doi.org/10.12989/scs.2018.28.6.759.
  38. Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Temple-Smith, P. and Dawes, C.J. (1992), "The Welding Institute, Improvements relating to friction welding", Eur. Patent Specif, 615, B1.
  39. Timesli, A. (2020), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano. Res., 9(2), 69-82. https://doi.org/10.12989/anr.2021.11.6.581.
  40. Timesli, A. (2021), "A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls", Adv. Nano. Res., 11(6), 581-593. https://doi.org/10.12989/anr.2021.11.6.581.
  41. Timesli, A. (2022), "Optimized radius of influence domain in meshless approach for modeling of large deformation problems", Iran. J. Sci. Technol. Tran. Mech. Eng., 46, 541-551. https://doi.org/10.1007/s40997-021-00427-3. 
  42. Timesli, A., Braikat, B., Lahmam, H. and Zahrouni, H. (2015), "A new algorithm based on moving least square method to simulate material mixing in friction stir welding", Eng. Anal. Bound. Elem., 50, 372-380. https://doi.org/10.1016/j.enganabound.2014.09.011.
  43. Van Do, V.N., Tran, M.T. and Lee, C.H. (2018), "Nonlinear thermal buckling analyses of functionally graded plates by a mesh free radial point interpolation method", Eng. Anal. Bound. Elem., 87, 153-164. https://doi.org/10.1016/j.enganabound.2017.12.001.
  44. Wang, J.G. and Liu, G.R. (2002a), "A point interpolation meshless method based on radial basis functions", Int. J. Numer. Meth. Eng., 54(11), 1623-1648. https://doi.org/10.1002/nme.489.
  45. Wang, J.G. and Liu, G.R. (2002b), "On the optimal shape parameters of radial basis functions used for 2-D meshless methods", Comput. Meth. Appl. Mech. Eng., 191(23-24), 2611-2630. https://doi.org/10.1016/S0045-7825(01)00419-4.