Acknowledgement
This research is financially supported by National Natural Science Foundation of China (Grant No. 52178111, 51890902 and) and China Postdoctoral Science Foundation (Grant No. 2022M720576).
References
- Bian, J. and Jing, X.J. (2019), "Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure", Mech. Syst. Signal Pr., 125, 21-51. https://doi.org/10.1016/j.ymssp.2018.02.014.
- Bian, J. and Jing, X.J. (2020), "Analysis and design of a novel and compact X-structured vibration isolation mount (X-Mount) with wider quasi-zero-stiffness range", Nonlin. Dyn., 101(4), 2195-2222. https://doi.org/10.1007/s11071-020-05878-y.
- Bian, J. and Jing, X.J. (2021), "A nonlinear X-shaped structure based tuned mass damper with multi-variable optimization (X-absorber)", Commun. Nonlin. Sci., 99, 105829. https://doi.org/10.1016/j.cnsns.2021.105829.
- Bian, J., Zhou, X.H., Ke, K., Yam, M.C.H. and Wang, Y.H. (2022), "Seismic resilient steel substation with BI-TMDI: A theoretical model for optimal design", J. Constr. Steel Res., 192, 107233. https://doi.org/10.1016/j.jcsr.2022.107233.
- Bian, J., Zhou, X.H. Ke, K., Yam, M.C.H., Wang, Y.H., Gu, Z. and Sun, M.J. (2023), "A novel prismatic-shaped isolation platform with tunable negative stiffness and enhanced quasi-zero stiffness effect", Smart Struct. Syst., 31(3), 213-227. https://doi.org/10.12989/sss.2023.31.3.213.
- Bouna, H.S., Nbendjo, B.R.N. and Woafo, P. (2020), "Isolation performance of a quasi-zero stiffness isolator in vibration isolation of a multi-span continuous beam bridge under pier base vibrating excitation", Nonlin. Dyn., 100(2), 1125-1141. https://doi.org/10.1007/s11071-020-05580-z.
- Brzeski, P. and Perlikowski, P. (2016), "Effects of play and inerter nonlinearities on the performance of tuned mass damper", Nonlin. Dyn., 88(2), 1027-1041. https://doi.org/10.1007/s11071-016-3292-1.
- Cai, C.Q., Zhou, J.X., Wu, L.C., Wang, K., Xu, D.L. and Ouyang, H.J. (2020), "Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps", Compos. Struct., 236, 111862. https://doi.org/10.1016/j.compstruct.2020.111862.
- Chai, Y.Y., Jing, X.J. and Guo, Y.Q. (2022), "A compact X-shaped mechanism based 3-DOF anti-vibration unit with enhanced tunable QZS property", Mech. Syst. Signal Pr., 168, 108651. https://doi.org/10.1016/j.ymssp.2021.108651.
- Chen, M.T. and Young, B. (2020a), "Beam-column tests of cold-formed steel elliptical hollow sections", Eng. Struct., 210, 109911. https://doi.org/10.1016/j.engstruct.2019.109911.
- Chen, M.T. and Young, B. (2020b), "Tests of cold-formed normal and high strength steel tubes under tension", Thin Wall. Struct., 153, 106844. https://doi.org/10.1016/j.tws.2020.106844.
- Chen, M.T., Young, B., Martins, A.D., Camotim, D. and Dinis, P.B. (2020c), "Uniformly bent CFS lipped channel beams experiencing local-distortional interaction: Experimental investigation", J. Constr. Steel Res., 170, 106098. https://doi.org/10.1016/j.jcsr.2020.106098.
- Chen, M.T. and Young, B. (2021), "Numerical analysis and design of cold-formed steel elliptical hollow sections under combined compression and bending", Eng. Struct., 241, 112417. https://doi.org/10.1016/j.engstruct.2021.112417.
- Chen, M.T., Chen, Y. and Young, B. (2023), "Experimental investigation on cold-formed steel elliptical hollow section Tjoints", Eng. Struct., 283, 115593. https://doi.org/10.1016/j.engstruct.2023.115593.
- Chen, M.T., Cai, A., Pandey, M., Shen, C., Zhang, Y. and Hu, L. (2023b), "Mechanical properties of high strength steels and weld metals at arctic low temperatures", Thin Wall. Struct., 185, 110543. https://doi.org/10.1016/j.tws.2023.110543.
- Cheng, X.S., Qi, L., Zhang, S.L., Mu, Y.T. and Xia, L.Y. (2022), "Vibration characteristic of rubber isolation plate-shell integrated concrete liquid-storage structure", Struct. Eng. Mech., 81(6), 691-703. https://doi.org/10.12989/sem.2022.81.6.691.
- Chou, J.S., Ou, Y.C., Lin, K.Y. and Wang, Z.J. (2018), "Structural failure simulation of onshore wind turbines impacted by strong winds", Eng. Struct., 162, 257-269. https://doi.org/10.1016/j.engstruct.2018.02.006.
- Deng, T.C., Wen, G.L., Ding, H., Lu, Z.Q. and Chen, L.Q. (2020), "A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck", Mech. Syst. Signal Pr., 145, 106967. https://doi.org/10.1016/j.ymssp.2020.106967.
- Ding, H. and Chen, L.Q. (2018), "Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators", Nonlin. Dyn., 95(3), 2367-2382. https://doi.org/10.1007/s11071-018-4697-9.
- Feng, X. and Jing, X.J. (2019), "Human body inspired vibration isolation: Beneficial nonlinear stiffness, nonlinear damping & nonlinear inertia", Mech. Syst. Signal Pr., 117, 786-812. https://doi.org/10.1016/j.ymssp.2018.08.040.
- Gao, H., Wang, H., Li, J., Wang, Z.H., Ni, Y.H. and Liang, R.J. (2021), "Damping enhancement of the inerter on the viscous damper in mitigating cable vibrations", Smart Struct. Syst., 28(1), 89-104. https://doi.org/10.12989/sss.2021.28.1.089.
- Gatti, G. (2020), "Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections", Commun. Nonlin. Sci., 83, 105143. https://doi.org/10.1016/j.cnsns.2019.105143.
- Gatti, G. (2021a), "Effect of parameters on the design of a suspension system with four oblique springs", Shock Vib., 2021, Article ID 5556088. https://doi.org/10.1155/2021/5556088.
- Gatti, G. (2021b), "Optimizing elastic potential energy via geometric nonlinear stiffness", Commun. Nonlin. Sci., 103, 106035. https://doi.org/10.1016/j.cnsns.2021.106035.
- Gatti, G. (2022), "An adjustable device to adaptively realise diverse nonlinear force-displacement characteristics", Mech. Syst. Signal Pr., 180, 109379. https://doi.org/10.1016/j.ymssp.2022.109379.
- Gatti, G., Ledezma-Ramirez, D.F. and Brennan, M.J. (2023), "Performance of a shock isolator inspired by skeletal muscles", Int. J. Mech. Sci., 244, 108066. https://doi.org/10.1016/j.ijmecsci.2022.108066.
- Han, M., Wang, Y.D., Du, H.K., Chu, X.Y., Cui, M.Z. and Meng, L.S. (2021), "Base-isolated steel structure with spring limiters under near-fault earthquakes: Experiment", Earthq. Struct., 21(3), 239-250. https://doi.org/10.12989/eas.2021.21.3.239.
- Han, W.J., Lu, Z.Q., Niu, M.Q. and Chen, L.Q. (2022), "A high-static-low-dynamics stiffness vibration isolator via an elliptical ring", Mech. Syst. Signal Pr., 162, 108061. https://doi.org/10.1016/j.ymssp.2021.108061.
- Hartog, J. (1985), Mechanical Vibrations, Courier Corporation.
- He, X., Ke, K., Guo, L., Yam, M.C.H. and Wang, Z. (2021), "A replaceable fuse steel-concrete composite connection: Force transfer mechanism and design considerations", J. Constr. Steel Res., 183, 106760. https://doi.org/10.1016/j.jcsr.2021.106760.
- He, X., Chen, Y., Ke, K., Shao, T. and Yam, M.C.H. (2022), "Development of a connection equipped with fuse angles for steel moment resisting frames", Eng. Struct., 265, 114503. https://doi.org/10.1016/j.engstruct.2022.114503.
- Hemmati, A., Oterkus, E. and Khorasanchi, M. (2019), "Vibration suppression of offshore wind turbine foundations using tuned liquid column dampers and tuned mass dampers", Ocean Eng., 172, 286-295. https://doi.org/10.1016/j.oceaneng.2018.11.055.
- Ho, J.C.M., Ou, X.L., Li, C.W., Song, W., Wang, Q. and Lai, M.H. (2021), "Uni-axial behaviour of expansive CFST and DSCFST stub columns", Eng. Struct., 237, 112193. https://doi.org/10.1016/j.engstruct.2021.112193.
- Ibrahim, R.A. (2008), "Recent advances in nonlinear passive vibration isolators", J. Sound Vib., 314(3-5), 371-452. https://doi.org/10.1016/j.jsv.2008.01.014.
- Jamil, F., Chen, F., Deng, B.L., Parker, R.G. and Wang, P. (2022), "Inerter-based elastic metamaterials for band gap at extremely low frequency", Extreme Mech. Lett., 56, 101847. https://doi.org/10.1016/j.eml.2022.101847.
- Jing, X.J., Zhang, L.L., Feng, X., Sun, B. and Li, Q.K. (2019), "A novel bio-inspired anti-vibration structure for operating handheld jackhammers", Mech. Syst. Signal Pr., 118, 317-339. https://doi.org/10.1016/j.ymssp.2021.108267.
- Jing, X.J., Chai, Y.Y., Chao, X. and Bian, J. (2022), "In-situ adjustable nonlinear passive stiffness using X-shaped mechanisms", Mech. Syst. Signal Pr., 170, 108267. https://doi.org/10.1016/j.ymssp.2021.108267.
- Ke, K., Yam, M.C.H. and Ke, S.Z. (2017), "A dual-energy-demand-indices-based evaluation procedure of damage-control frame structures with energy dissipation fuses", Soil Dyn. Earthq. Eng., 95, 61-82. https://doi.org/10.1016/j.soildyn.2017.01.025.
- Ke, K. and Yam, M.C.H. (2018a), "A performance-based damage-control design procedure of hybrid steel MRFs with EDBs", J. Constr. Steel Res., 143, 46-61. https://doi.org/10.1016/j.jcsr.2017.12.011.
- Ke, K., Xiong, Y.H., Yam, M.C.H., Lam, A.C.C. and Chung, K.F. (2018b), "Shear lag effect on ultimate tensile capacity of high strength steel angles", J. Constr. Steel Res., 145, 300-314. https://doi.org/10.1016/j.jcsr.2018.02.015.
- Ke, K., Wang, F.M., Yam, M.C.H., Deng, L. and He, Y.J. (2019), "A multi-stage-based nonlinear static procedure for estimating seismic demands of steel MRFs equipped with steel slit walls", Eng. Struct., 183, 1091-1108. https://doi.org/10.1016/j.engstruct.2019.01.029.
- Ke, K., Chen, Y.H., Zhou, X.H., Yam, M.C.H. and Hu, S.L. (2023a), "Experimental and numerical study of a brace-type hybrid damper with steel slit plates enhanced by friction mechanism", Thin Wall Struct, 182, 110249. https://doi.org/10.1016/j.tws.2022.110249.
- Ke, K., Yam, M.C.H., Zhang, P., Shi, Y., Li, Y. and Liu, S.J. (2023b), "Self-centring damper with multi-energy-dissipation mechanisms: Insights and structural seismic demand perspective", J. Constr. Steel Res., 204, 107837. https://doi.org/10.1016/j.jcsr.2023.107837.
- Lai, M.H. and Ho, J.C.M. (2017), "An analysis-based model for axially loaded circular CFST columns", Thin Wall. Struct., 119, 770-781. https://doi.org/10.1016/j.tws.2017.07.024.
- Lai, M.H., Song, W., Ou, X.L., Chen, M.T., Wang, Q. and Ho, J.C.M. (2020a), "A path dependent stress-strain model for concrete-filled-steel-tube column", Eng. Struct., 211, 110312. https://doi.org/10.1016/j.engstruct.2020.110312
- Lai, M.H., Li, C., Ho, J. C. M. and Chen, M.T. (2020b), "Experimental investigation on hollow-steel-tube columns with external confinements", J. Constr. Steel Res., 166, 105865. https://doi.org/10.1016/j.jcsr.2019.105865.
- Lin, X.M., Yam, M.C.H., Ke, K., He, Q. and Chung, K.F. (2022), "Investigation of block shear strength of high strength steel bolted connections", J. Constr. Steel Res., 196, 107407. https://doi.org/10.1016/j.jcsr.2022.107407.
- Liu, C.C., Jing, X.J., Daley, S. and Li, F.M. (2015), "Recent advances in micro-vibration isolation", Mech. Syst. Signal Pr., 56-57, 55-80. https://doi.org/10.1016/j.ymssp.2014.10.007.
- Liu, C.C., Jing, X.J. and Chen, Z.B. (2016), "Band stop vibration suppression using a passive X-shape structured lever-type isolation system", Mech. Syst. Signal Pr., 68-69, 342-353. https://doi.org/10.1016/j.ymssp.2015.07.018.
- Liu, C.R. and Yu, K.P. (2020a), "Superharmonic resonance of the quasi-zero-stiffness vibration isolator and its effect on the isolation performance", Nonlin. Dyn., 100(1), 95-117. https://doi.org/10.1007/s11071-020-05509-6.
- Liu, C.R., Yu, K.P. and Tang, J. (2020b), "New insights into the damping characteristics of a typical quasi-zero-stiffness vibration isolator", Int. J. Nonlin. Mech., 124, 103511. https://doi.org/10.1016/j.ijnonlinmec.2020.103511.
- Liu, C.R., Yu, K.P., Liao, B.P. and Hu, R.P. (2021), "Enhanced vibration isolation performance of quasi-zero-stiffness isolator by introducing tunable nonlinear inerter", Commun. Nonlin. Sci., 95, 105654. https://doi.org/10.1016/j.cnsns.2020.105654.
- Liu, Y.H., Wu, J.B. and Dona, M. (2018), "Effectiveness of fluid-viscous dampers for improved seismic performance of interstorey isolated buildings", Eng. Struct., 169, 276-292. https://doi.org/10.1016/j.engstruct.2018.05.031.
- Liu, Y.H., Yang, J., Yi, X.S. and Chronopoulos, D. (2022), "Enhanced suppression of low-frequency vibration transmission in metamaterials with linear and nonlinear inerters", J. Appl. Phys., 131, 105103. https://doi.org/10.1063/5.0084399.
- Moraes, F.D.H., Silveira, M. and Goncalves, P.J.P. (2018), "On the dynamics of a vibration isolator with geometrically nonlinear inerter", Nonlin. Dyn., 93(3), 1325-1340. https://doi.org/10.1007/s11071-018-4262-6.
- Patil, A., Jung, S. and Kwon, O.S. (2016), "Structural performance of a parked wind turbine tower subjected to strong ground motions", Eng. Struct., 120, 92-102. https://doi.org/10.1016/j.engstruct.2016.04.020.
- Rahman, M., Ong, Z.C., Chong, W.T., Julai, S. and Khoo, S.Y. (2015), "Performance enhancement of wind turbine systems with vibration control: A review", Renew. Sust. Energ. Rev., 51, 43-54. https://doi.org/10.1016/j.rser.2015.05.078.
- Sadeghi, J., Haghighi, E. and Esmaeili, M. (2021), "Performance of under foundation shock mat in reduction of railway-induced vibrations", Struct. Eng. Mech., 78(4), 425-437. https://doi.org/10.12989/sem.2021.78.4.425.
- Smith, M.C. (2002), "Synthesis of mechanical networks: the inerter", IEEE T. Automat. Contr., 47(10), 1648-1662. https://doi.org/10.1109/TAC.2002.803532.
- Su, N., Bian, J., Peng, S.T., Chen, Z.Q. and Xia, Y. (2022), "Generic optimal design approach for inerter-based tuned mass systems", Int. J. Mech. Sci., 233, 107654. https://doi.org/10.1016/j.ijmecsci.2022.107654.
- Su, N., Bian, J., Chen, Z.Q. and Xia, Y. (2023a), "A novel lever-type inerter-based vibration absorber", Int. J. Mech. Sci., 254, 108440. https://doi.org/10.1016/j.ijmecsci.2023.108440.
- Su, N., Bian, J., Peng, S.T., Chen, Z.Q. and Xia, Y. (2023b), "Analytical optimal design of inerter-based vibration absorbers with negative stiffness balancing static amplification and dynamic reduction effects", Mech. Syst. Signal Pr., 192, 110235. https://doi.org/10.1016/j.ymssp.2023.110235.
- Su, N., Bian, J., Peng, S.T., Chen, Z.Q. and Xia, Y. (2023c), "Balancing static and dynamic performances of TMD with negative stiffness", Int. J. Mech. Sci., 243, 108068. https://doi.org/10.1016/j.ijmecsci.2022.108068.
- Sun, J.Y., Huang, X.C., Liu, X.T., Xiao, F. and Hua, H.X. (2013), "Study on the force transmissibility of vibration isolators with geometric nonlinear damping", Nonlin. Dyn., 74(4), 1103-1112. https://doi.org/10.1007/s11071-013-1027-0.
- Valeev, A. (2018), "Vibration isolating plate with quasi-zero effect", Mater. Today: Proc., 5(1), 688-692. https://doi.org/10.1016/j.matpr.2017.11.134.
- Valeev, A., Tashbulatov, R. and Mastobeay, B. (2021), "Designing and experimental study of compact vibration isolator with quasi-zero stiffness", Struct. Eng. Mech., 79(4), 415-428. https://doi.org/10.12989/sem.2021.79.4.415.
- Wang, J.J., Ke, K., Yam, M.C.H., Teng, M.H. and Wang, W. (2023), "Improving structural robustness of steel frame buildings by enhancing floor deck connections", J. Constr. Steel Res., 204, 107842. https://doi.org/10.1016/j.jcsr.2023.107842.
- Wang, K., Zhou, J.X., Chang, Y.P., Ouyang, H.J., Xu, D.L. and Yang, Y. (2020), "A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism", Nonlin. Dyn., 101(2), 755-773. https://doi.org/10.1007/s11071-020-05806-0.
- Wang, M., Sun, F.F., Yang, J.Q. and Nagarajaiah, S. (2019), "Seismic protection of SDOF systems with a negative stiffness amplifying damper", Eng. Struct., 190, 128-141. https://doi.org/10.1016/j.engstruct.2019.03.110.
- Wang, Y., Li, S.M., Neild, S.A. and Jiang, J.Z. (2016), "Comparison of the dynamic performance of nonlinear one and two degree-of-freedom vibration isolators with quasi-zero stiffness", Nonlin. Dyn., 88(1), 635-654. https://doi.org/10.1007/s11071-016-3266-3.
- Wang, Y., Jing, X.J., Dai, H.H. and Li, F.M. (2019), "Subharmonics and ultra-subharmonics of a bio-inspired nonlinear isolation system", Int. J. Mech. Sci., 152, 167-184. https://doi.org/10.1016/j.ijmecsci.2018.12.054.
- Wu, Z.J., Jing, X.J., Bian, J., Li, F.M. and Allen, R. (2015), "Vibration isolation by exploring bio-inspired structural nonlinearity", Bioinspir. Biomim., 10(5), 056015. https://doi.org/10.1088/1748-3190/10/5/056015.
- Yan, G., Zou, H.X., Wang, S., Zhao, L.C., Wu, Z.Y. and Zhang, W.M. (2022), "Bio-inspired toe-like structure for low-frequency vibration isolation", Mech. Syst. Signal Pr., 162, 108010. https://doi.org/10.1016/j.ymssp.2021.108010.
- Yan, J.J., Chen, M.T., Quach, W.M., Yan, M. and Young, B. (2019), "Mechanical properties and cross-sectional behavior of additively manufactured high strength steel tubular sections", Thin Wall. Struct., 144, 106158. https://doi.org/10.1016/j.tws.2019.04.050.
- Yi, S., Chen, M.T., Young, B. (2023), "Design of concrete-filled cold-formed steel elliptical stub columns", Eng. Struct., 276, 115269. https://doi.org/10.1016/j.engstruct.2022.115269.
- Zhakatayev, A., Kappassov, Z. and Varol, H.A. (2020), "Analytical modeling and design of negative stiffness honeycombs", Smart Mater. Struct., 29(4), 045024. https://doi.org/10.1088/1361-665X/ab773a.
- Zhang, H.Y., Zhou, X.H., Ke, K., Yam, M.C.H., He, X.Z. and Li, H. (2023), "Self-centring hybrid-steel-frames employing energy dissipation sequences: Insights and inelastic seismic demand model", J. Build. Eng., 63, 105451. https://doi.org/10.1016/j.jobe.2022.105451.
- Zhao, F., Ji, J.C., Ye, K. and Luo, Q.T. (2020), "Increase of quasi-zero stiffness region using two pairs of oblique springs", Mech. Syst. Signal Pr., 144, 106975. https://doi.org/10.1016/j.ymssp.2020.106975.
- Zhou, X.H., Tan, Y.C., Ke, K., Yam, M.C.H., Zhang, H.Y. and Xu, J.Y. (2023a), "An experimental and numerical study of brace-type long double C-section steel slit dampers", J. Build. Eng., 64, 105555. https://doi.org/10.1016/j.jobe.2022.105555.
- Zhou, X.H., Huang, Y., Ke, K., Yam, M.C.H., Zhang, H.Y. and Fang, H. (2023b), "Large-size shape memory alloy plates subjected to cyclic tension: Towards novel self-centring connections in steel frames", Thin Wall Struct, 185, 110591. https://doi.org/10.1016/j.tws.2023.110591.
- Zhou, Z., Ke, K., Chen, Y. and Yam, M.C.H. (2022), "High strength steel frames with curved knee braces: performance-based damage-control design framework", J. Constr. Steel Res., 196, 107392. https://doi.org/10.1016/j.jcsr.2022.107392.
- Zhou, Z.Y., Chen Y.Y., Yam, M.C.H., Ke, K. and He, X.Z. (2023), "Experimental investigation of a high strength steel frame with curved knee braces subjected to extreme earthquakes", Thin Wall Struct, 185, 110596. https://doi.org/10.1016/j.tws.2023.110596.