DOI QR코드

DOI QR Code

A passive vibration isolator with bio-inspired structure and inerter nonlinear effects

  • Jing Bian (School of Civil Engineering, Chongqing University) ;
  • Xu-hong Zhou (School of Civil Engineering, Chongqing University) ;
  • Ke Ke (School of Civil Engineering, Chongqing University) ;
  • Michael CH Yam (Department of Building and Real Estate, The Hong Kong Polytechnic University) ;
  • Yu-hang Wang (School of Civil Engineering, Chongqing University) ;
  • Yue Qiu (Grimwade Centre for Cultural Materials Conservation, School of Historical and Philosophical Studies, Faculty of Arts, The University of Melbourne)
  • Received : 2022.05.08
  • Accepted : 2023.08.17
  • Published : 2023.11.10

Abstract

This paper developed and examined a novel passive vibration isolator (i.e., "X-inerter") motivated by combining a bio-inspired structure and a rack-pinion inerter. The bio-inspired structure provided nonlinear stiffness and damping owing to its geometric nonlinearity. In addition, the behavior was further enhanced by a gear inerter that produced a special nonlinear inertia effect; thus, an X-inerter was developed. As a result, the X-inerter can achieve both high-static-low-dynamic stiffness (HSLDS) and quasi-zero stiffness (QZS), obtaining ultra-low frequency isolation. Furthermore, the installed inerter can produce a coupled nonlinear inertia and damping effect, leading to an anti-resonance frequency near the resonance, wide isolation region, and low resonance peak. Both static and dynamic analyses of the proposed isolator were conducted and the structural parameters' influence was comprehensively investigated. The X-inerter was proven to be comparatively more stable in the ultra-low frequency than the benchmarking QZS isolator due to the nonlinear damping and inertia properties. Moreover, the inertia effect could suppress the bio-inspired structure's super- and sub-harmonic resonance. Therefore, the X-inerter isolator generally possesses desirable nonlinear stiffness, nonlinear damping, and unique nonlinear inertia, designed to achieve the ultra-low natural frequency, the anti-resonance property, and a wide isolation region with a low resonance peak.

Keywords

Acknowledgement

This research is financially supported by National Natural Science Foundation of China (Grant No. 52178111, 51890902 and) and China Postdoctoral Science Foundation (Grant No. 2022M720576).

References

  1. Bian, J. and Jing, X.J. (2019), "Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure", Mech. Syst. Signal Pr., 125, 21-51. https://doi.org/10.1016/j.ymssp.2018.02.014. 
  2. Bian, J. and Jing, X.J. (2020), "Analysis and design of a novel and compact X-structured vibration isolation mount (X-Mount) with wider quasi-zero-stiffness range", Nonlin. Dyn., 101(4), 2195-2222. https://doi.org/10.1007/s11071-020-05878-y. 
  3. Bian, J. and Jing, X.J. (2021), "A nonlinear X-shaped structure based tuned mass damper with multi-variable optimization (X-absorber)", Commun. Nonlin. Sci., 99, 105829. https://doi.org/10.1016/j.cnsns.2021.105829. 
  4. Bian, J., Zhou, X.H., Ke, K., Yam, M.C.H. and Wang, Y.H. (2022), "Seismic resilient steel substation with BI-TMDI: A theoretical model for optimal design", J. Constr. Steel Res., 192, 107233. https://doi.org/10.1016/j.jcsr.2022.107233. 
  5. Bian, J., Zhou, X.H. Ke, K., Yam, M.C.H., Wang, Y.H., Gu, Z. and Sun, M.J. (2023), "A novel prismatic-shaped isolation platform with tunable negative stiffness and enhanced quasi-zero stiffness effect", Smart Struct. Syst., 31(3), 213-227. https://doi.org/10.12989/sss.2023.31.3.213. 
  6. Bouna, H.S., Nbendjo, B.R.N. and Woafo, P. (2020), "Isolation performance of a quasi-zero stiffness isolator in vibration isolation of a multi-span continuous beam bridge under pier base vibrating excitation", Nonlin. Dyn., 100(2), 1125-1141. https://doi.org/10.1007/s11071-020-05580-z. 
  7. Brzeski, P. and Perlikowski, P. (2016), "Effects of play and inerter nonlinearities on the performance of tuned mass damper", Nonlin. Dyn., 88(2), 1027-1041. https://doi.org/10.1007/s11071-016-3292-1. 
  8. Cai, C.Q., Zhou, J.X., Wu, L.C., Wang, K., Xu, D.L. and Ouyang, H.J. (2020), "Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps", Compos. Struct., 236, 111862. https://doi.org/10.1016/j.compstruct.2020.111862. 
  9. Chai, Y.Y., Jing, X.J. and Guo, Y.Q. (2022), "A compact X-shaped mechanism based 3-DOF anti-vibration unit with enhanced tunable QZS property", Mech. Syst. Signal Pr., 168, 108651. https://doi.org/10.1016/j.ymssp.2021.108651. 
  10. Chen, M.T. and Young, B. (2020a), "Beam-column tests of cold-formed steel elliptical hollow sections", Eng. Struct., 210, 109911. https://doi.org/10.1016/j.engstruct.2019.109911. 
  11. Chen, M.T. and Young, B. (2020b), "Tests of cold-formed normal and high strength steel tubes under tension", Thin Wall. Struct., 153, 106844. https://doi.org/10.1016/j.tws.2020.106844. 
  12. Chen, M.T., Young, B., Martins, A.D., Camotim, D. and Dinis, P.B. (2020c), "Uniformly bent CFS lipped channel beams experiencing local-distortional interaction: Experimental investigation", J. Constr. Steel Res., 170, 106098. https://doi.org/10.1016/j.jcsr.2020.106098. 
  13. Chen, M.T. and Young, B. (2021), "Numerical analysis and design of cold-formed steel elliptical hollow sections under combined compression and bending", Eng. Struct., 241, 112417. https://doi.org/10.1016/j.engstruct.2021.112417. 
  14. Chen, M.T., Chen, Y. and Young, B. (2023), "Experimental investigation on cold-formed steel elliptical hollow section Tjoints", Eng. Struct., 283, 115593. https://doi.org/10.1016/j.engstruct.2023.115593. 
  15. Chen, M.T., Cai, A., Pandey, M., Shen, C., Zhang, Y. and Hu, L. (2023b), "Mechanical properties of high strength steels and weld metals at arctic low temperatures", Thin Wall. Struct., 185, 110543. https://doi.org/10.1016/j.tws.2023.110543. 
  16. Cheng, X.S., Qi, L., Zhang, S.L., Mu, Y.T. and Xia, L.Y. (2022), "Vibration characteristic of rubber isolation plate-shell integrated concrete liquid-storage structure", Struct. Eng. Mech., 81(6), 691-703. https://doi.org/10.12989/sem.2022.81.6.691. 
  17. Chou, J.S., Ou, Y.C., Lin, K.Y. and Wang, Z.J. (2018), "Structural failure simulation of onshore wind turbines impacted by strong winds", Eng. Struct., 162, 257-269. https://doi.org/10.1016/j.engstruct.2018.02.006. 
  18. Deng, T.C., Wen, G.L., Ding, H., Lu, Z.Q. and Chen, L.Q. (2020), "A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck", Mech. Syst. Signal Pr., 145, 106967. https://doi.org/10.1016/j.ymssp.2020.106967. 
  19. Ding, H. and Chen, L.Q. (2018), "Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators", Nonlin. Dyn., 95(3), 2367-2382. https://doi.org/10.1007/s11071-018-4697-9. 
  20. Feng, X. and Jing, X.J. (2019), "Human body inspired vibration isolation: Beneficial nonlinear stiffness, nonlinear damping & nonlinear inertia", Mech. Syst. Signal Pr., 117, 786-812. https://doi.org/10.1016/j.ymssp.2018.08.040. 
  21. Gao, H., Wang, H., Li, J., Wang, Z.H., Ni, Y.H. and Liang, R.J. (2021), "Damping enhancement of the inerter on the viscous damper in mitigating cable vibrations", Smart Struct. Syst., 28(1), 89-104. https://doi.org/10.12989/sss.2021.28.1.089. 
  22. Gatti, G. (2020), "Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections", Commun. Nonlin. Sci., 83, 105143. https://doi.org/10.1016/j.cnsns.2019.105143. 
  23. Gatti, G. (2021a), "Effect of parameters on the design of a suspension system with four oblique springs", Shock Vib., 2021, Article ID 5556088. https://doi.org/10.1155/2021/5556088. 
  24. Gatti, G. (2021b), "Optimizing elastic potential energy via geometric nonlinear stiffness", Commun. Nonlin. Sci., 103, 106035. https://doi.org/10.1016/j.cnsns.2021.106035. 
  25. Gatti, G. (2022), "An adjustable device to adaptively realise diverse nonlinear force-displacement characteristics", Mech. Syst. Signal Pr., 180, 109379. https://doi.org/10.1016/j.ymssp.2022.109379. 
  26. Gatti, G., Ledezma-Ramirez, D.F. and Brennan, M.J. (2023), "Performance of a shock isolator inspired by skeletal muscles", Int. J. Mech. Sci., 244, 108066. https://doi.org/10.1016/j.ijmecsci.2022.108066. 
  27. Han, M., Wang, Y.D., Du, H.K., Chu, X.Y., Cui, M.Z. and Meng, L.S. (2021), "Base-isolated steel structure with spring limiters under near-fault earthquakes: Experiment", Earthq. Struct., 21(3), 239-250. https://doi.org/10.12989/eas.2021.21.3.239. 
  28. Han, W.J., Lu, Z.Q., Niu, M.Q. and Chen, L.Q. (2022), "A high-static-low-dynamics stiffness vibration isolator via an elliptical ring", Mech. Syst. Signal Pr., 162, 108061. https://doi.org/10.1016/j.ymssp.2021.108061. 
  29. Hartog, J. (1985), Mechanical Vibrations, Courier Corporation.
  30. He, X., Ke, K., Guo, L., Yam, M.C.H. and Wang, Z. (2021), "A replaceable fuse steel-concrete composite connection: Force transfer mechanism and design considerations", J. Constr. Steel Res., 183, 106760. https://doi.org/10.1016/j.jcsr.2021.106760. 
  31. He, X., Chen, Y., Ke, K., Shao, T. and Yam, M.C.H. (2022), "Development of a connection equipped with fuse angles for steel moment resisting frames", Eng. Struct., 265, 114503. https://doi.org/10.1016/j.engstruct.2022.114503. 
  32. Hemmati, A., Oterkus, E. and Khorasanchi, M. (2019), "Vibration suppression of offshore wind turbine foundations using tuned liquid column dampers and tuned mass dampers", Ocean Eng., 172, 286-295. https://doi.org/10.1016/j.oceaneng.2018.11.055. 
  33. Ho, J.C.M., Ou, X.L., Li, C.W., Song, W., Wang, Q. and Lai, M.H. (2021), "Uni-axial behaviour of expansive CFST and DSCFST stub columns", Eng. Struct., 237, 112193. https://doi.org/10.1016/j.engstruct.2021.112193. 
  34. Ibrahim, R.A. (2008), "Recent advances in nonlinear passive vibration isolators", J. Sound Vib., 314(3-5), 371-452. https://doi.org/10.1016/j.jsv.2008.01.014. 
  35. Jamil, F., Chen, F., Deng, B.L., Parker, R.G. and Wang, P. (2022), "Inerter-based elastic metamaterials for band gap at extremely low frequency", Extreme Mech. Lett., 56, 101847. https://doi.org/10.1016/j.eml.2022.101847. 
  36. Jing, X.J., Zhang, L.L., Feng, X., Sun, B. and Li, Q.K. (2019), "A novel bio-inspired anti-vibration structure for operating handheld jackhammers", Mech. Syst. Signal Pr., 118, 317-339. https://doi.org/10.1016/j.ymssp.2021.108267. 
  37. Jing, X.J., Chai, Y.Y., Chao, X. and Bian, J. (2022), "In-situ adjustable nonlinear passive stiffness using X-shaped mechanisms", Mech. Syst. Signal Pr., 170, 108267. https://doi.org/10.1016/j.ymssp.2021.108267. 
  38. Ke, K., Yam, M.C.H. and Ke, S.Z. (2017), "A dual-energy-demand-indices-based evaluation procedure of damage-control frame structures with energy dissipation fuses", Soil Dyn. Earthq. Eng., 95, 61-82. https://doi.org/10.1016/j.soildyn.2017.01.025. 
  39. Ke, K. and Yam, M.C.H. (2018a), "A performance-based damage-control design procedure of hybrid steel MRFs with EDBs", J. Constr. Steel Res., 143, 46-61. https://doi.org/10.1016/j.jcsr.2017.12.011. 
  40. Ke, K., Xiong, Y.H., Yam, M.C.H., Lam, A.C.C. and Chung, K.F. (2018b), "Shear lag effect on ultimate tensile capacity of high strength steel angles", J. Constr. Steel Res., 145, 300-314. https://doi.org/10.1016/j.jcsr.2018.02.015. 
  41. Ke, K., Wang, F.M., Yam, M.C.H., Deng, L. and He, Y.J. (2019), "A multi-stage-based nonlinear static procedure for estimating seismic demands of steel MRFs equipped with steel slit walls", Eng. Struct., 183, 1091-1108. https://doi.org/10.1016/j.engstruct.2019.01.029. 
  42. Ke, K., Chen, Y.H., Zhou, X.H., Yam, M.C.H. and Hu, S.L. (2023a), "Experimental and numerical study of a brace-type hybrid damper with steel slit plates enhanced by friction mechanism", Thin Wall Struct, 182, 110249. https://doi.org/10.1016/j.tws.2022.110249. 
  43. Ke, K., Yam, M.C.H., Zhang, P., Shi, Y., Li, Y. and Liu, S.J. (2023b), "Self-centring damper with multi-energy-dissipation mechanisms: Insights and structural seismic demand perspective", J. Constr. Steel Res., 204, 107837. https://doi.org/10.1016/j.jcsr.2023.107837. 
  44. Lai, M.H. and Ho, J.C.M. (2017), "An analysis-based model for axially loaded circular CFST columns", Thin Wall. Struct., 119, 770-781. https://doi.org/10.1016/j.tws.2017.07.024. 
  45. Lai, M.H., Song, W., Ou, X.L., Chen, M.T., Wang, Q. and Ho, J.C.M. (2020a), "A path dependent stress-strain model for concrete-filled-steel-tube column", Eng. Struct., 211, 110312. https://doi.org/10.1016/j.engstruct.2020.110312 
  46. Lai, M.H., Li, C., Ho, J. C. M. and Chen, M.T. (2020b), "Experimental investigation on hollow-steel-tube columns with external confinements", J. Constr. Steel Res., 166, 105865. https://doi.org/10.1016/j.jcsr.2019.105865. 
  47. Lin, X.M., Yam, M.C.H., Ke, K., He, Q. and Chung, K.F. (2022), "Investigation of block shear strength of high strength steel bolted connections", J. Constr. Steel Res., 196, 107407. https://doi.org/10.1016/j.jcsr.2022.107407. 
  48. Liu, C.C., Jing, X.J., Daley, S. and Li, F.M. (2015), "Recent advances in micro-vibration isolation", Mech. Syst. Signal Pr., 56-57, 55-80. https://doi.org/10.1016/j.ymssp.2014.10.007. 
  49. Liu, C.C., Jing, X.J. and Chen, Z.B. (2016), "Band stop vibration suppression using a passive X-shape structured lever-type isolation system", Mech. Syst. Signal Pr., 68-69, 342-353. https://doi.org/10.1016/j.ymssp.2015.07.018. 
  50. Liu, C.R. and Yu, K.P. (2020a), "Superharmonic resonance of the quasi-zero-stiffness vibration isolator and its effect on the isolation performance", Nonlin. Dyn., 100(1), 95-117. https://doi.org/10.1007/s11071-020-05509-6. 
  51. Liu, C.R., Yu, K.P. and Tang, J. (2020b), "New insights into the damping characteristics of a typical quasi-zero-stiffness vibration isolator", Int. J. Nonlin. Mech., 124, 103511. https://doi.org/10.1016/j.ijnonlinmec.2020.103511. 
  52. Liu, C.R., Yu, K.P., Liao, B.P. and Hu, R.P. (2021), "Enhanced vibration isolation performance of quasi-zero-stiffness isolator by introducing tunable nonlinear inerter", Commun. Nonlin. Sci., 95, 105654. https://doi.org/10.1016/j.cnsns.2020.105654. 
  53. Liu, Y.H., Wu, J.B. and Dona, M. (2018), "Effectiveness of fluid-viscous dampers for improved seismic performance of interstorey isolated buildings", Eng. Struct., 169, 276-292. https://doi.org/10.1016/j.engstruct.2018.05.031. 
  54. Liu, Y.H., Yang, J., Yi, X.S. and Chronopoulos, D. (2022), "Enhanced suppression of low-frequency vibration transmission in metamaterials with linear and nonlinear inerters", J. Appl. Phys., 131, 105103. https://doi.org/10.1063/5.0084399. 
  55. Moraes, F.D.H., Silveira, M. and Goncalves, P.J.P. (2018), "On the dynamics of a vibration isolator with geometrically nonlinear inerter", Nonlin. Dyn., 93(3), 1325-1340. https://doi.org/10.1007/s11071-018-4262-6. 
  56. Patil, A., Jung, S. and Kwon, O.S. (2016), "Structural performance of a parked wind turbine tower subjected to strong ground motions", Eng. Struct., 120, 92-102. https://doi.org/10.1016/j.engstruct.2016.04.020. 
  57. Rahman, M., Ong, Z.C., Chong, W.T., Julai, S. and Khoo, S.Y. (2015), "Performance enhancement of wind turbine systems with vibration control: A review", Renew. Sust. Energ. Rev., 51, 43-54. https://doi.org/10.1016/j.rser.2015.05.078. 
  58. Sadeghi, J., Haghighi, E. and Esmaeili, M. (2021), "Performance of under foundation shock mat in reduction of railway-induced vibrations", Struct. Eng. Mech., 78(4), 425-437. https://doi.org/10.12989/sem.2021.78.4.425. 
  59. Smith, M.C. (2002), "Synthesis of mechanical networks: the inerter", IEEE T. Automat. Contr., 47(10), 1648-1662. https://doi.org/10.1109/TAC.2002.803532. 
  60. Su, N., Bian, J., Peng, S.T., Chen, Z.Q. and Xia, Y. (2022), "Generic optimal design approach for inerter-based tuned mass systems", Int. J. Mech. Sci., 233, 107654. https://doi.org/10.1016/j.ijmecsci.2022.107654. 
  61. Su, N., Bian, J., Chen, Z.Q. and Xia, Y. (2023a), "A novel lever-type inerter-based vibration absorber", Int. J. Mech. Sci., 254, 108440. https://doi.org/10.1016/j.ijmecsci.2023.108440. 
  62. Su, N., Bian, J., Peng, S.T., Chen, Z.Q. and Xia, Y. (2023b), "Analytical optimal design of inerter-based vibration absorbers with negative stiffness balancing static amplification and dynamic reduction effects", Mech. Syst. Signal Pr., 192, 110235. https://doi.org/10.1016/j.ymssp.2023.110235. 
  63. Su, N., Bian, J., Peng, S.T., Chen, Z.Q. and Xia, Y. (2023c), "Balancing static and dynamic performances of TMD with negative stiffness", Int. J. Mech. Sci., 243, 108068. https://doi.org/10.1016/j.ijmecsci.2022.108068. 
  64. Sun, J.Y., Huang, X.C., Liu, X.T., Xiao, F. and Hua, H.X. (2013), "Study on the force transmissibility of vibration isolators with geometric nonlinear damping", Nonlin. Dyn., 74(4), 1103-1112. https://doi.org/10.1007/s11071-013-1027-0. 
  65. Valeev, A. (2018), "Vibration isolating plate with quasi-zero effect", Mater. Today: Proc., 5(1), 688-692. https://doi.org/10.1016/j.matpr.2017.11.134. 
  66. Valeev, A., Tashbulatov, R. and Mastobeay, B. (2021), "Designing and experimental study of compact vibration isolator with quasi-zero stiffness", Struct. Eng. Mech., 79(4), 415-428. https://doi.org/10.12989/sem.2021.79.4.415. 
  67. Wang, J.J., Ke, K., Yam, M.C.H., Teng, M.H. and Wang, W. (2023), "Improving structural robustness of steel frame buildings by enhancing floor deck connections", J. Constr. Steel Res., 204, 107842. https://doi.org/10.1016/j.jcsr.2023.107842. 
  68. Wang, K., Zhou, J.X., Chang, Y.P., Ouyang, H.J., Xu, D.L. and Yang, Y. (2020), "A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism", Nonlin. Dyn., 101(2), 755-773. https://doi.org/10.1007/s11071-020-05806-0. 
  69. Wang, M., Sun, F.F., Yang, J.Q. and Nagarajaiah, S. (2019), "Seismic protection of SDOF systems with a negative stiffness amplifying damper", Eng. Struct., 190, 128-141. https://doi.org/10.1016/j.engstruct.2019.03.110. 
  70. Wang, Y., Li, S.M., Neild, S.A. and Jiang, J.Z. (2016), "Comparison of the dynamic performance of nonlinear one and two degree-of-freedom vibration isolators with quasi-zero stiffness", Nonlin. Dyn., 88(1), 635-654. https://doi.org/10.1007/s11071-016-3266-3. 
  71. Wang, Y., Jing, X.J., Dai, H.H. and Li, F.M. (2019), "Subharmonics and ultra-subharmonics of a bio-inspired nonlinear isolation system", Int. J. Mech. Sci., 152, 167-184. https://doi.org/10.1016/j.ijmecsci.2018.12.054. 
  72. Wu, Z.J., Jing, X.J., Bian, J., Li, F.M. and Allen, R. (2015), "Vibration isolation by exploring bio-inspired structural nonlinearity", Bioinspir. Biomim., 10(5), 056015. https://doi.org/10.1088/1748-3190/10/5/056015. 
  73. Yan, G., Zou, H.X., Wang, S., Zhao, L.C., Wu, Z.Y. and Zhang, W.M. (2022), "Bio-inspired toe-like structure for low-frequency vibration isolation", Mech. Syst. Signal Pr., 162, 108010. https://doi.org/10.1016/j.ymssp.2021.108010. 
  74. Yan, J.J., Chen, M.T., Quach, W.M., Yan, M. and Young, B. (2019), "Mechanical properties and cross-sectional behavior of additively manufactured high strength steel tubular sections", Thin Wall. Struct., 144, 106158. https://doi.org/10.1016/j.tws.2019.04.050. 
  75. Yi, S., Chen, M.T., Young, B. (2023), "Design of concrete-filled cold-formed steel elliptical stub columns", Eng. Struct., 276, 115269. https://doi.org/10.1016/j.engstruct.2022.115269. 
  76. Zhakatayev, A., Kappassov, Z. and Varol, H.A. (2020), "Analytical modeling and design of negative stiffness honeycombs", Smart Mater. Struct., 29(4), 045024. https://doi.org/10.1088/1361-665X/ab773a. 
  77. Zhang, H.Y., Zhou, X.H., Ke, K., Yam, M.C.H., He, X.Z. and Li, H. (2023), "Self-centring hybrid-steel-frames employing energy dissipation sequences: Insights and inelastic seismic demand model", J. Build. Eng., 63, 105451. https://doi.org/10.1016/j.jobe.2022.105451. 
  78. Zhao, F., Ji, J.C., Ye, K. and Luo, Q.T. (2020), "Increase of quasi-zero stiffness region using two pairs of oblique springs", Mech. Syst. Signal Pr., 144, 106975. https://doi.org/10.1016/j.ymssp.2020.106975. 
  79. Zhou, X.H., Tan, Y.C., Ke, K., Yam, M.C.H., Zhang, H.Y. and Xu, J.Y. (2023a), "An experimental and numerical study of brace-type long double C-section steel slit dampers", J. Build. Eng., 64, 105555. https://doi.org/10.1016/j.jobe.2022.105555. 
  80. Zhou, X.H., Huang, Y., Ke, K., Yam, M.C.H., Zhang, H.Y. and Fang, H. (2023b), "Large-size shape memory alloy plates subjected to cyclic tension: Towards novel self-centring connections in steel frames", Thin Wall Struct, 185, 110591. https://doi.org/10.1016/j.tws.2023.110591. 
  81. Zhou, Z., Ke, K., Chen, Y. and Yam, M.C.H. (2022), "High strength steel frames with curved knee braces: performance-based damage-control design framework", J. Constr. Steel Res., 196, 107392. https://doi.org/10.1016/j.jcsr.2022.107392. 
  82. Zhou, Z.Y., Chen Y.Y., Yam, M.C.H., Ke, K. and He, X.Z. (2023), "Experimental investigation of a high strength steel frame with curved knee braces subjected to extreme earthquakes", Thin Wall Struct, 185, 110596. https://doi.org/10.1016/j.tws.2023.110596.