DOI QR코드

DOI QR Code

Vibration control of low-rise buildings considering nonlinear behavior of concrete using tuned mass damper

  • Abbas Bigdeli (StruTechnology) ;
  • Md. Motiur Rahman (Department of Civil Engineering, Pabna University of Science and Technology) ;
  • Dookie Kim (Department of Civil Engineering and Environmental Engineering, Kongju National University)
  • Received : 2022.03.22
  • Accepted : 2023.10.04
  • Published : 2023.11.10

Abstract

This study investigates the effectiveness of tuned mass dampers (TMDs) in controlling vibrations in low-rise reinforced concrete buildings. It examines both linear and nonlinear behaviors of concrete structures subjected to strong ground motions from the PEER database. The research follows the ASCE 7-16 provisions to model structural nonlinearity. Additionally, the study explores the effect of varying TMD mass ratios on the performance of these systems in real-world conditions. The findings emphasize the importance of accounting for structural nonlinearity in low-rise buildings, highlighting its significant influence on the controlled response under severe seismic excitations. The study suggests including nonlinear analysis in seismic design practices and recommends customizing TMD designs to optimize vibration control. These recommendations have practical implications for enhancing the safety and effectiveness of seismic design practices for low-rise buildings.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. RS-2023-00241517). Additionally, we acknowledge the support provided by TetraElements LLC, which offered valuable assistance and data for this research. Their contributions greatly contributed to the success of this study.

References

  1. Agrawal, A.K. and Yang, J.N. (1996), "Optimal polynomial control of seismically excited linear structures", J. Eng. Mech., 122(8), 753-761. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:8(753).
  2. Almazan, J.L., De la Llera, J.C., Inaudi, J.A., Lopez-Garcia, D. and Izquierdo, L.E. (2007), "A bidirectional and homogeneous tuned mass damper: A new device for passive control of vibrations", Eng. Struct., 29(7), 1548-1560. https://doi.org/10.1016/j.engstruct.2006.09.005.
  3. Araz, O. (2020), "Effect of detuning conditions on the performance of non-traditional tuned mass dampers under external excitation", Arch. Appl. Mech., 90(3), 523-532. https://doi.org/10.1007/s00419-019-01623-z.
  4. Araz, O. (2022a), "Optimization of three-element tuned mass damper based on minimization of the acceleration transfer function for seismically excited structures", J. Brazil. Soc. Mech. Sci. Eng., 44, 459. https://doi.org/10.1007/s40430-022-03743-0.
  5. Araz, O. (2022b), "Optimization of tuned mass damper inerter for a high-rise building considering soil-structure interaction", Arch. Appl. Mech., 92(10), 2951-2971. https://doi.org/10.1007/s00419-022-02217-y.
  6. Araz, O. and Kahya, V. (2021), "Design of series tuned mass dampers for seismic control of structures using simulated annealing algorithm", Arch. Appl. Mech., 91, 4343-4359. https://doi.org/10.1007/s00419-021-02013-0.
  7. Araz, O. and Kahya, V. (2022), "Optimization of multiple tuned mass dampers for a two-span continuous railway bridge via differential evolution algorithm", Struct., 39, 29-38. https://doi.org/10.1016/j.istruc.2022.03.021.
  8. Araz, O. and Noroozinejad Farsangi, E. (2023), "Optimum tuned tandem mass dampers for suppressing seismic-induced vibrations considering soil-structure interaction", Struct., 52, 1146-1159. https://doi.org/10.1016/j.istruc.2023.04.017.
  9. Araz, O.C. (2023), "Effect of foundation embedment ratio in suppressing seismic-induced vibrations using optimum tuned mass damper", Soil Dyn. Earthq. Eng., 171, 107981. https://doi.org/10.1016/j.soildyn.2023.107981.
  10. Araz, O.E. (2023), "Seismic-induced vibration control of a multi-story building with double tuned mass dampers considering soil-structure interaction", Soil Dyn. Earthq. Eng., 166, 107765. https://doi.org/10.1016/j.soildyn.2023.107765.
  11. Araz, O.T. (2022), "Effect of earthquake frequency content on seismic-induced vibration control of structures equipped with tuned mass damper", J. Brazil. Soc. Mech. Sci. Eng., 44, 584. https://doi.org/10.1007/s40430-022-03895-z.
  12. ASCE (2017), ASCE/SEI 7-16: Minimum Design Loads and Associated Criteria for Buildings and other Structures, American Society of Civil Engineers, Reston, VA, USA.
  13. Berto, L., Bovo, M., Rocca, I., Saetta, A. and Savoia, M. (2020), "Seismic safety of valuable non-structural elements in RC buildings: Floor response spectrum approaches", Eng. Struct., 205, 110081. https://doi.org/10.1016/j.engstruct.2019.110081.
  14. Bigdeli, Y. and Kim, D. (2015), "Response control of irregular structures using structure-TLCD coupled system under seismic excitations", KSCE J. Civil Eng., 19(3), 672-681. https://doi.org/10.1007/s12205-013-1019-0.
  15. Bigdeli, Y. and Kim, D. (2016a), "Damping effects of the passive control devices on structural vibration control: TMD, TLC and TLCD for varying total masses", KSCE J. Civil Eng., 20(1), 301-308. https://doi.org/10.1007/s12205-015-0365-5.
  16. Bigdeli, Y. and Kim, D. (2016b), "Investigation of the performance of two passive controllers in mitigating the rotational response of irregular buildings", Adv. Mater. Sci. Eng., 2016, Article ID 1898792. https://doi.org/10.1155/2016/1898792.
  17. Carvajal, J.C., Finn, W.D.L. and Ventura, C.E. (2020), "Response spectrum-based seismic response of bridge embankments", Can. Geotech. J., 57(11), 1639-1651. https://doi.org/10.1139/cgj2018-0674.
  18. Chu, S.Y., Soong, T.T., Reinhorn, A.M., Helgeson, R.J. and Riley, M.A. (2002), "Integration issues in implementation of structural control systems", J. Struct. Control, 9(1), 31-58. https://doi.org/10.1002/stc.2.
  19. Connor, J. and Laflamme, S. (2014), Tuned Mass Damper Systems, Structural Motion Engineering, Springer International Publishing, Cham.
  20. CSI (2018), Getting Started With SAP2000 (Integrated Solution for Structural Analysis and Design), Computers and Structures, Inc.
  21. CSI (2020), CSI Knowledge Base, Computers and Structures, Inc.
  22. De Domenico, D., Gandelli, E. and Quaglini, V. (2020), "Effective base isolation combining low-friction curved surface sliders and hysteretic gap dampers", Soil Dyn. Earthq. Eng., 130, 105989. https://doi.org/10.1016/j.soildyn.2019.105989.
  23. Diaz, I.M., Pereira, E. and Reynolds, P. (2012), "Integral resonant control scheme for cancelling human-induced vibrations in light-weight pedestrian structures", Struct. Control Hlth. Monit., 19(1), 55-69. https://doi.org/10.1002/stc.423.
  24. Elias, S. and Matsagar, V. (2018), "Wind response control of tall buildings with a tuned mass damper", J. Build. Eng., 15, 51-60. https://doi.org/10.1016/j.jobe.2017.11.005.
  25. Farghaly, A.A. and Salem Ahmed, M. (2012), "Optimum design of TMD system for tall buildings", ISRN Civil Eng., 2012, 716469. https://doi.org/10.5402/2012/716469.
  26. Fernandes, J.C.M., Goncalves, P.J.P. and Silveira, M. (2020), "Interaction between asymmetrical damping and geometrical nonlinearity in vehicle suspension systems improves comfort", Nonlin. Dyn., 99(2), 1561-1576. https://doi.org/10.1007/s11071-019-05374-y.
  27. Frahm, H. (1911), Device for Damping Vibrations of Bodies, Office, U.P., USA.
  28. Guachi, R., Bini, F., Bici, M., Campana, F., Marinozzi, F. and Guachi, L. (2020), "Finite element analysis in colorectal surgery: non-linear effects induced by material model and geometry", Comput. Meth. Biomech. Biomed. Eng.: Imag. Visualiz., 8(2), 219-230. https://doi.org/10.1080/21681163.2019.1679669.
  29. Huergo, I.F. and Hernandez, H. (2020), "Coupled-two-beam discrete model for dynamic analysis of tall buildings with tuned mass dampers including soil-structure interaction", Struct. Des. Tall Spec. Build., 29(1), e1683. https://doi.org/10.1002/tal.1683.
  30. Islam, M.S., Do, J. and Kim, D. (2018), "Multi-objective optimization of TMD for frame structure based on response surface methodology and weighted desirability function", KSCE J. Civil Eng., 22(8), 3015-3027. https://doi.org/10.1007/s12205-017-0387-2.
  31. Kaloop, M.R., Hu, J.W. and Bigdeli, Y. (2017), "The performance of structure-controller coupled systems analysis using probabilistic evaluation and identification model approach", Shock Vib., 2017, Article ID 5482307. https://doi.org/10.1155/2017/5482307.
  32. Kim, D., Hassan, M.K., Chang, S. and Bigdeli, Y. (2016), Nonlinear Vibration Control of 3d Irregular Structures subjected to Seismic Loads, Civil and Environmental Engineering, Concepts, Methodologies, Tools, and Applications, IGI Global, Hershey, PA, USA.
  33. Liu, Y., Wang, K., Mercan, O., Chen, H. and Tan, P. (2020), "Experimental and numerical studies on the optimal design of tuned mass dampers for vibration control of high-rise structures", Eng. Struct., 211, 110486. https://doi.org/10.1016/j.engstruct.2020.110486.
  34. Manchalwar, A. and Bakre, S.V. (2020), "Vibration control of structure by top base isolated storey as tuned mass damper", Int. J. Dyn. Control, 8(3), 963-972. https://doi.org/10.1007/s40435-020-00614-1.
  35. Matta, E. (2011), "Performance of tuned mass dampers against near-field earthquakes", Struct. Eng. Mech., 39(5), 621-642. https://doi.org/10.12989/sem.2011.39.5.621.
  36. Miguel, L.F.F., Fadel Miguel, L.F. and Lopez, R.H. (2015), "A firefly algorithm for the design of force and placement of friction dampers for control of man-induced vibrations in footbridges", Optim. Eng., 16(3), 633-661. https://doi.org/10.1007/s11081-014-9269-3.
  37. Miguel, L.F.F., Lopez, R.H., Torii, A.J., Miguel, L.F.F. and Beck, A.T. (2016a), "Robust design optimization of TMDs in vehicle-bridge coupled vibration problems", Eng. Struct., 126, 703-711. https://doi.org/10.1016/j.engstruct.2016.08.033.
  38. Miguel, L.F.F., Miguel, L.F.F. and Lopez, R.H. (2016b), "Simultaneous optimization of force and placement of friction dampers under seismic loading", Eng. Optim., 48(4), 582-602. https://doi.org/10.1080/0305215X.2015.1025774.
  39. Min, K.W., Seong, J.Y. and Kim, J. (2010), "Simple design procedure of a friction damper for reducing seismic responses of a single-story structure", Eng. Struct., 32(11), 3539-3547. https://doi.org/10.1016/j.engstruct.2010.07.022.
  40. Mirjalili, M.R. and Rofooei, F.R. (2020), "Dynamic-based pushover analysis for two-way plan-asymmetric buildings under bidirectional seismic excitation", J. Struct. Eng., 146(3), 04019223. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002501.
  41. Mohebbi, M., Shakeri, K., Ghanbarpour, Y. and Majzoub, H. (2013), "Designing optimal multiple tuned mass dampers using genetic algorithms (GAs) for mitigating the seismic response of structures", J. Vib. Control, 19(4), 605-625. https://doi.org/10.1177/1077546311434520.
  42. Nasr, A., Mrad, C. and Nasri, R. (2018), "Friction tuned mass damper optimization for structure under harmonic force excitation", Struct. Eng. Mech., 65(6), 761-769. https://doi.org/10.12989/sem.2018.65.6.761.
  43. Ohtori, Y., Christenson, R.E., Spencer, B.F. and Dyke, S.J. (2004), "Benchmark control problems for seismically excited nonlinear buildings", J. Eng. Mech., 130(4), 366-385. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(366).
  44. Ontiveros-Perez, S.P., Miguel, L.F.F. and Miguel, L.F.F. (2017a), "A new assessment in the simultaneous optimization of friction dampers in plane and spatial civil structures", Math. Prob. Eng., 2017, Article ID 6040986. https://doi.org/10.1155/2017/6040986.
  45. Ontiveros-Perez, S.P., Miguel, L.F.F. and Miguel, L.F.F. (2017b), "Optimization of location and forces of friction dampers", REM-Int. Eng. J., 70, 273-279. https://doi.org/10.1590/0370-44672015700065.
  46. Orlando, D. and Goncalves, P.B. (2013), "Hybrid nonlinear control of a tall tower with a pendulum absorber", Struct. Eng. Mech., 46(2), 153-177. https://doi.org/10.12989/sem.2013.46.2.153.
  47. PEER (2020), PEER Ground Motion Database.
  48. Petrini, F., Giaralis, A. and Wang, Z. (2020), "Optimal tuned mass-damper-inerter (TMDI) design in wind-excited tall buildings for occupants' comfort serviceability performance and energy harvesting", Eng. Struct., 204, 109904. https://doi.org/10.1016/j.engstruct.2019.109904.
  49. Pourzeynali, S., Lavasani, H. and Modarayi, A. (2007), "Active control of high rise building structures using fuzzy logic and genetic algorithms", Eng. Struct., 29(3), 346-357. https://doi.org/10.12989/sem.2014.51.4.547.
  50. Qu, W.L., Chen, Z.H. and Xu, Y.L. (2001), "Dynamic analysis of wind-excited truss tower with friction dampers", Comput. Struct., 79(32), 2817-2831. https://doi.org/10.1016/S0045-7949(01)00151-1.
  51. Radmard Rahmani, H. and Konke, C. (2019), "Seismic control of tall buildings using distributed multiple tuned mass dampers", Adv. Civil Eng., 2019, Article ID 6480384. https://doi.org/10.1155/2019/6480384.
  52. Rahman, M.M., Nahar, T.T. and Kim, D. (2021), "Effect of frequency characteristics of ground motion on response of tuned mass damper controlled inelastic concrete frame", Build., 11(2), 74. https://doi.org/10.3390/buildings11020074.
  53. Roy, B.K. and Chakraborty, S. (2013), "Optimal design of base isolation system considering uncertain bounded system parameters", Struct. Eng. Mech., 46(1), 19-37. https://doi.org/10.12989/sem.2013.46.1.019.
  54. Salimi, M.R. and Yazdani, A. (2018), "Reliability-based fragility analysis of nonlinear structures under the actions of random earthquake loads", Struct. Eng. Mech., 66(1), 75-84. https://doi.org/10.12989/sem.2018.66.1.075.
  55. Samali, B. and Al-Dawod, M. (2003), "Performance of a five-storey benchmark model using an active tuned mass damper and a fuzzy controller", Eng. Struct., 25(13), 1597-1610. https://doi.org/10.1016/S0141-0296(03)00132-9.
  56. Sarbjeet, S. and Datta, T.K. (2003), "Sliding mode control of building frames under random ground motion", J. Earthq. Eng., 7(1), 73-95. https://doi.org/10.1080/13632460309350442.
  57. Stein, G. and Athans, M. (1987), "The LQG/LTR procedure for multivariable feedback control design", IEEE Trans. Auto. Control, 32(2), 105-114. https://doi.org/10.1109/TAC.1987.1104550.
  58. TetraElements (2020), TetraElements, FEA Consulting Group, https://www.tetraelements.com.
  59. Tian, L., Zhou, M., Qiu, C., Pan, H. and Rong, K. (2020), "Seismic response control of transmission tower-line system using SMA-based TMD", Struct. Eng. Mech., 74(1), 129-143. https://doi.org/10.12989/sem.2020.74.1.129.
  60. Vellar, L.S., Ontiveros-Perez, S.P., Miguel, L.F.F. and Fadel Miguel, L.F. (2019), "Robust optimum design of multiple tuned mass dampers for vibration control in buildings subjected to seismic excitation", Shock Vib., 2019, Article ID 9273714. https://doi.org/10.1155/2019/9273714.
  61. Wang, Z., Chen, Z. and Spencer, B. (2009), "Self-powered and sensing control system based on MR damper: presentation and application", Proc. SPIE 7292, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009, San Diego, CA, March.
  62. Wu, Q., Zhao, X., Zheng, R. and Minagawa, K. (2016), "High response performance of a tuned-mass damper for vibration suppression of offshore platform under earthquake loads", Shock Vib., 2016, Article ID 7383679. https://doi.org/10.1155/2016/7383679.
  63. Xu, Z.D. (2007), "Earthquake mitigation study on viscoelastic dampers for reinforced concrete structures", J. Vib. Control, 13(1), 29-43. https://doi.org/10.1177/1077546306068058.
  64. Zhang, J. and Huo, Y. (2009), "Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method", Eng. Struct., 31(8), 1648-1660. https://doi.org/10.1016/j.engstruct.2009.02.017.