DOI QR코드

DOI QR Code

Enhancement of Power Generation in Hybrid Thermo-Magneto-Piezoelectric-Pyroelectric Energy Generator with Piezoelectric Polymer

압전 폴리머를 접목한 초전-자기-압전 발전소자의 출력 특성 향상 연구

  • Chang Min Baek (School of Materials Engineering, Yeungnam University) ;
  • Geon Lee (School of Materials Engineering, Yeungnam University) ;
  • Jungho Ryu (School of Materials Engineering, Yeungnam University)
  • 백창민 (영남대학교 신소재공학부) ;
  • 이건 (영남대학교 신소재공학부) ;
  • 류정호 (영남대학교 신소재공학부)
  • Received : 2023.08.02
  • Accepted : 2023.08.17
  • Published : 2023.11.01

Abstract

Energy harvesting technology, which converts wasted energy sources in everyday life into usable electric energy, is gaining attention as a solution to the challenges of charging and managing batteries for the driving of IoT sensors, which are one of the key technologies in the era of the fourth industrial revolution. Hybrid energy harvesting technology involves integrating two or more energy harvesting technologies to generate electric energy from multiple energy conversion mechanisms. In this study, a hybrid energy harvesting device called TMPPEG (thermo-magneto-piezoelectric-pyroelectric energy generator), which utilizes low-grade waste heat, was developed by incorporating PVDF polymer piezoelectric components and optimizing the system. The variations in piezoelectric output and thermoelectric output were examined based on the spacing of the clamps, and it was found that the device exhibited the highest energy output when the clamp spacing was 2 mm. The voltage and energy output characteristics of the TMPPEG were evaluated, demonstrating its potential as an efficient hybrid energy harvesting component that effectively harnesses low-grade waste heat.

Keywords

Acknowledgement

본 논문은 산업통상자원부 산업혁신인재성장지원사업의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(친환경 금속소재산업 전문인력양성, #P0023676).

References

  1. M. Alaa, A. A. Zaidan, B. B. Zaidan, M. Talal, and M.L.M. Kiah, J. Network Comput. Appl., 97, 48 (2017).  doi: https://doi.org/10.1016/j.jnca.2017.08.017
  2. M. Shirvanimoghaddam, K. Shirvanimoghaddam, M. M. Abolhasani, M. Farhangi, V. Z. Barsari, H. Liu, M. Dohler, and M. Naebe, IEEE Access, 7, 94533 (2019). doi: https://doi.org/10.1109/ACCESS.2019.2928523
  3. D. Ma, G. Lan, M. Hassan, W. Hu, and S. K. Das, IEEE Commun. Surv. Tutorials, 22, 1222 (2020). doi: https://doi.org/10.1109/COMST.2019.2962526
  4. E. Manavalan and K. Jayakrishna, Comput. Ind. Eng., 127, 925 (2019). doi: https://doi.org/10.1016/j.cie.2018.11.030
  5. S. Vaidya, P. Ambad, and S. Bhosle, Proc. Manuf., 20, 233 (2018). doi: https://doi.org/10.1016/j.promfg.2018.02.034
  6. M. Peddigari, G. Y. Kim, C. H. Park, Y. Min, J. W. Kim, C. W. Ahn, J. J. Choi, B. D. Hahn, J. H. Choi, D. S. Park, J. K. Hong, J. T. Yeom, K. I. Park, D. Y. Jeong, W. H. Yoon, J. Ryu, and G. T. Hwang, Sensors, 19, 2196 (2019). doi: https://doi.org/10.3390/s19092196
  7. L. Gu, Microelectron. J., 42, 277 (2011). doi: https://doi.org/10.1016/j.mejo.2010.10.007
  8. G. T. Hwang, Y. Kim, J. H. Lee, S. K. Oh, C. K. Jeong, D. Y. Park, J. Ryu, H. S. Kwon, S. G. Lee, B. Joung, D. Kim, and K. J. Lee, Energy Environ. Sci., 8, 2677 (2015). doi: https://doi.org/10.1039/c5ee01593f
  9. C. K. Jeong, J. Lee, S. Han, J. Ryu, G. T. Hwang, D. Y. Park, J. H. Park, S. S. Lee, M. Byun, S. H. Ko, and K. J. Lee, Adv. Mater., 27, 2866 (2015). doi: https://doi.org/10.1002/adma.201500367
  10. Y. Ammar, S. Joyce, R. Norman, Y. Wang, and A. P. Roskilly, Appl. Energy, 89, 3 (2012). doi: https://doi.org/10.1016/j.apenergy.2011.06.003
  11. S. Pandya, G. Velarde, L. Zhang, J. D. Wilbur, A. Smith, B. Hanrahan, C. Dames, and L. W. Martin, NPG Asia Mater., 11, 26 (2019). doi: https://doi.org/10.1038/s41427-019-0125-y
  12. S. Bruckner, S. Liu, L. Miro, M. Radspieler, L. F. Cabeza, and E. Lavemann, Appl. Energy, 151, 157 (2015). doi: https://doi.org/10.1016/j.apenergy.2015.01.147
  13. M. Bendig, F. Marechal, and D. Favrat, Appl. Therm. Eng., 61, 134 (2013). doi: https://doi.org/10.1016/j.applthermaleng.2013.03.020
  14. Z. Y. Xu, R. Z. Wang, and C. Yang, Energy, 176, 1037 (2019). doi: https://doi.org/10.1016/j.energy.2019.04.001
  15. H. Fang, J. Xia, K. Zhu, Y. Su, and Y. Jiang, Energy Policy, 62, 236 (2013). doi: https://doi.org/10.1016/j.enpol.2013.06.104
  16. H. Ryu, H. J. Yoon, and S. W. Kim, Adv. Mater., 31, 1802898 (2019). doi: https://doi.org/10.1002/adma.201802898
  17. Y. Bai, H. Jantunen, and J. Juuti, Front. Mater., 5, 65 (2018). doi: https://doi.org/10.3389/fmats.2018.00065
  18. Y. Pang, Y. Cao, M. Derakhshani, Y. Fang, Z. L. Wang, and C. Cao, Matter, 4, 116 (2021). doi: https://doi.org/10.1016/j.matt.2020.10.018
  19. A. Koyuncuoglu, O. Ozyurt, T. Okutucu, H. Kulah, and O. Zorlu, Proc. 11th International Energy Conversion Engineering Conference (2013) p. 4030. doi: https://doi.org/10.2514/6.2013-4030
  20. L. Feng, G. Liu, H. Guo, Q. Tang, X. Pu, J. Chen, X. Wang, Y. Xi, and C. Hu, Nano Energy, 47, 217 (2018). doi: https://doi.org/10.1016/j.nanoen.2018.02.042
  21. S. Hur, S. Kim, H. S. Kim, A. Kumar, C. Kwon, J. Shin, H. Kang, T. H. Sung, J. Ryu, J. M. Baik, and H. C. Song, Nano Energy, 114, 108596 (2023). doi: https://doi.org/10.1016/j.nanoen.2023.108596
  22. H. S. Choi, S. Hur, A. Kumar, H. Song, J. M. Baik, H. C. Song, and J. Ryu, Appl. Energy, 344, 121271 (2023). doi: https://doi.org/10.1016/j.apenergy.2023.121271
  23. J. Guo, H. Zhou, T. Fan, B. Zhao, X. Shang, T. Zhou, and Y. He, J. Mater. Res. Technol., 9, 14254 (2020). doi: https://doi.org/10.1016/j.jmrt.2020.10.022
  24. M. Ujihara, G. P. Carman, and D. G. Lee, Appl. Phys. Lett., 91, 093508 (2007). doi: https://doi.org/10.1063/1.2775096