DOI QR코드

DOI QR Code

Development of a prototype simulator for dental education

치의학 교육을 위한 프로토타입 시뮬레이터의 개발

  • Mi-El Kim (Department of Oral Anatomy, School of Dentistry, Seoul National University) ;
  • Jaehoon Sim (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Aein Mon (Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Myung-Joo Kim (Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Young-Seok Park (Department of Oral Anatomy, School of Dentistry, Seoul National University) ;
  • Ho-Beom Kwon (Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Jaeheung Park (Department of Prosthodontics, School of Dentistry, Seoul National University)
  • 김미엘 (서울대학교 치의학대학원 구강해부학교실) ;
  • 심재훈 (서울대학교 융합과학기술대학원 동적로봇시스템 연구실) ;
  • 에인 몬 (서울대학교 치의학대학원 치과보철학교실) ;
  • 김명주 (서울대학교 치의학대학원 치과보철학교실) ;
  • 박영석 (서울대학교 치의학대학원 구강해부학교실) ;
  • 권호범 (서울대학교 치의학대학원 치과보철학교실) ;
  • 박재흥 (서울대학교 융합과학기술대학원 동적로봇시스템 연구실)
  • Received : 2023.07.10
  • Accepted : 2023.07.24
  • Published : 2023.10.31

Abstract

Purpose. The purpose of the study was to fabricate a prototype robotic simulator for dental education, to test whether it could simulate mandibular movements, and to assess the possibility of the stimulator responding to stimuli during dental practice. Materials and methods. A virtual simulator model was developed based on segmentation of the hard tissues using cone-beam computed tomography (CBCT) data. The simulator frame was 3D printed using polylactic acid (PLA) material, and dentiforms and silicone face skin were also inserted. Servo actuators were used to control the movements of the simulator, and the simulator's response to dental stimuli was created by pressure and water level sensors. A water level test was performed to determine the specific threshold of the water level sensor. The mandibular movements and mandibular range of motion of the simulator were tested through computer simulation and the actual model. Results. The prototype robotic simulator consisted of an operational unit, an upper body with an electric device, a head with a temporomandibular joint (TMJ) and dentiforms. The TMJ of the simulator was capable of driving two degrees of freedom, implementing rotational and translational movements. In the water level test, the specific threshold of the water level sensor was 10.35 ml. The mandibular range of motion of the simulator was 50 mm in both computer simulation and the actual model. Conclusion. Although further advancements are still required to improve its efficiency and stability, the upper-body prototype simulator has the potential to be useful in dental practice education.

목적. 이 연구의 목적은 치의학 교육을 위한 프로토타입 로봇 시뮬레이터를 제작하고, 하악운동을 시뮬레이션 할 수 있는지 여부를 테스트하며, 치과실습 중 자극에 대한 시뮬레이터의 반응 가능성을 평가하는 것이었다. 재료 및 방법. 가상 시뮬레이터 모델은 cone-beam computed tomography (CBCT) 데이터를 사용하여 경조직을 구획화한 후 제작되었다. 시뮬레이터의 프레임은 polylactic acid (PLA) 소재를 사용하여 3D 프린팅 되었으며, 덴티폼과 실리콘 얼굴 스킨을 장착하여 모델을 형성하였다. 서보 액추에이터는 시뮬레이터의 움직임을 제어하는데 사용되었고, 다양한 센서들로 시뮬레이터의 반응을 생성하였다. 수위 센서가 반응하는 물의 양을 측정하기 위해 수위테스트가 수행되었다. 또한, 컴퓨터 시뮬레이션과 실제 모델을 통해 시뮬레이터의 하악운동과 하악운동 범위를 테스트하였다. 결과. 프로토타입 로봇 시뮬레이터는 작동 장치, 전기 장치가 있는 상반신, 턱관절을 포함하는 머리 및 덴티폼으로 구성되었다. 시뮬레이터의 턱관절은 회전 및 병진 운동을 구현하면서 2자유도를 구동할 수 있었다. 수위 테스트에서 수위 센서의 특정 임계값은 10.35 ml였다. 컴퓨터 시뮬레이션과 실제 모델 모두에서 인간의 움직임을 모방하였고, 시뮬레이터의 하악운동 시 개구범위는 50 mm였다. 결론. 효율성과 안정성을 개선하기 위해서는 더 많은 발전이 필요하지만, 본 상반신 프로토타입의 시뮬레이터는 향후 치과실습 교육에 잠재적으로 유용할 것으로 기대된다.

Keywords

Acknowledgement

This work was supported by Seoul National University Research Grant in 2019.

References

  1. Sachdeo A, Konfino S, Icyda RU, Finkelman MD, Gulati H, Arsenault P, Hanley JB. An analysis of patient grievances in a dental school clinical environment. J Dent Educ 2012;76:1317-22.  https://doi.org/10.1002/j.0022-0337.2012.76.10.tb05386.x
  2. Rad FA, Otaki F, Baqain Z, Zary N, Al-Halabi M. Rapid transition to distance learning due to COVID-19: Perceptions of postgraduate dental learners and instructors. PLoS One 2021;16:e0246584. 
  3. Eckles RE, Meslin EM, Gaffney M, Helft PR. Medical ethics education: where are we? Where should we be going? a review. Acad Med 2005;80:1143-52.  https://doi.org/10.1097/00001888-200512000-00020
  4. Beemsterboer PL. Developing an ethic of access to care in dentistry. J Dent Educ 2006;70:1212-6.  https://doi.org/10.1002/j.0022-0337.2006.70.11.tb04201.x
  5. Mossey PA, Newton JP, Stirrups DR. Scope of the OSCE in the assessment of clinical skills in dentistry. Br Dent J 2001;190:323-6.  https://doi.org/10.1038/sj.bdj.4800961a
  6. Rodrigues P, Esteves A, Botelho J, Machado V, Zagalo C, Zorzal ER, Mendes JJ, Lopes DS. Usability, acceptance, and educational usefulness study of a new haptic operative dentistry virtual reality simulator. Comput Methods Programs Biomed 2022;221:106831. 
  7. Murbay S, Neelakantan P, Chang JWW, Yeung S. 'Evaluation of the introduction of a dental virtual simulator on the performance of undergraduate dental students in the pre-clinical operative dentistry course'. Eur J Dent Educ 2020;24:5-16.  https://doi.org/10.1111/eje.12453
  8. Mirghani I, Mushtaq F, Allsop MJ, Al-Saud LM, Tickhill N, Potter C, Keeling A, Mon-Williams MA, Manogue M. Capturing differences in dental training using a virtual reality simulator. Eur J Dent Educ 2018;22:67-71.  https://doi.org/10.1111/eje.12245
  9. de Boer IR, Lagerweij MD, Wesselink PR, Vervoorn JM. The effect of variations in force feedback in a virtual reality environment on the performance and satisfaction of dental students. Simul Healthc 2019;14:169-74.  https://doi.org/10.1097/SIH.0000000000000370
  10. Tanzawa T, Futaki K, Tani C, Hasegawa T, Yamamoto M, Miyazaki T, Maki K. Introduction of a robot patient into dental education. Eur J Dent Educ 2012;16:e195-9. https://doi.org/10.1111/j.1600-0579.2011.00697.x
  11. Tanzawa T, Futaki K, Kurabayashi H, Goto K, Yoshihama Y, Hasegawa T, Yamamoto M, Inoue M, Miyazaki T, Maki K. Medical emergency education using a robot patient in a dental setting. Eur J Dent Educ 2013;17:e114-9.  https://doi.org/10.1111/j.1600-0579.2012.00770.x
  12. McDevitt WE, MacCarthy DJ, Dermody J, O'Sullivan M, Shanley DB. Learning a clinical method to identify a mandibular reference position. Eur J Dent Educ 1998;2:33-8.  https://doi.org/10.1111/j.1600-0579.1998.tb00033.x
  13. McKee JR. Comparing condylar position repeatability for standardized versus nonstandardized methods of achieving centric relation. J Prosthet Dent 1997;77:280-4.  https://doi.org/10.1016/S0022-3913(97)70185-9
  14. Peck CC, Murray GM, Johnson CW, Klineberg IJ. The variability of condylar point pathways in open-close jaw movements. J Prosthet Dent 1997;77:394-404.  https://doi.org/10.1016/S0022-3913(97)70165-3
  15. Celic R, Jerolimov V, Knezovic Zlataric D. Relationship of slightly limited mandibular movements to temporomandibular disorders. Braz Dent J 2004;15:151-4.  https://doi.org/10.1590/S0103-64402004000200012
  16. Mohamed SE, Schmidt JR, Harrison JD. Articulators in dental education and practice. J Prosthet Dent 1976;36:319-25.  https://doi.org/10.1016/0022-3913(76)90190-6
  17. Kurth LE. Mandibular movement and articulator occlusion. J Am Dent Assoc 1949;39:37-46.  https://doi.org/10.14219/jada.archive.1949.0098
  18. Hugger A, Hugger S, Ruge S, John D, Kordass B. The rotation vs translation behavior during habitual opening and closing movements of the mandible and the relationship to movement paths of condylar points. Int J Comput Dent 2020;23:17-26. 
  19. Abe S, Noguchi N, Matsuka Y, Shinohara C, Kimura T, Oka K, Okura K, Rodis OMM, Kawano F. Educational effects using a robot patient simulation system for development of clinical attitude. Eur J Dent Educ 2018;22:e327-36.  https://doi.org/10.1111/eje.12298
  20. Ahire M, Dani N, Muttha R. Dental health education through the brushing ROBOTUTOR: a new learning experience. J Indian Soc Periodontol 2012;16:417-20.  https://doi.org/10.4103/0972-124X.100922
  21. Newby JP, Keast J, Adam WR. Simulation of medical emergencies in dental practice: development and evaluation of an undergraduate training programme. Aust Dent J 2010;55:399-404.  https://doi.org/10.1111/j.1834-7819.2010.01260.x
  22. Kinoshita H, Nagahata M, Takano N, Takemoto S, Matsunaga S, Abe S, Yoshinari M, Kawada E. Development of a drilling simulator for dental implant surgery. J Dent Educ 2016;80:83-90.  https://doi.org/10.1002/j.0022-0337.2016.80.1.tb06061.x
  23. Nishino T. Swallowing as a protective reflex for the upper respiratory tract. Anesthesiology 1993;79:588-601.  https://doi.org/10.1097/00000542-199309000-00024
  24. Kohjitani A, Egusa M, Shimada M, Miyawaki T. Accumulated oropharyngeal water increases coughing during dental treatment with intravenous sedation. J Oral Rehabil 2008;35:203-8.  https://doi.org/10.1111/j.1365-2842.2007.01752.x
  25. Hanamoto H, Kadono K, Boku A, Kudo C, Morimoto Y, Sugimura M, Niwa H. Both head extension and mouth opening impair the ability to swallow in the supine position. J Oral Rehabil 2014;41:588-94.  https://doi.org/10.1111/joor.12175
  26. Cavalcanti BN, Otani C, Rode SM. High-speed cavity preparation techniques with different water flows. J Prosthet Dent 2002;87:158-61.  https://doi.org/10.1067/mpr.2002.120655
  27. Lauer HC, Kraft E, Rothlauf W, Zwingers T. Effects of the temperature of cooling water during high-speed and ultrahigh-speed tooth preparation. J Prosthet Dent 1990;63:407-14.  https://doi.org/10.1016/0022-3913(90)90228-5
  28. Koster TJ, Timmerman MF, Feilzer AJ, Van der Velden U, Van der Weijden FA. Water coolant supply in relation to different ultrasonic scaler systems, tips and coolant settings. J Clin Periodontol 2009;36:127-31.  https://doi.org/10.1111/j.1600-051X.2008.01349.x
  29. Matys J, Grzech-Lesniak K. Dental aerosol as a hazard risk for dental workers. Materials (Basel) 2020;13:5109. 
  30. Choi JJE, Chen J, Choi YJ, Moffat SM, Duncan WJ, Waddell JN, Jermy M. Dental high-speed handpiece and ultrasonic scaler aerosol generation levels and the effect of suction and air supply. Infect Control Hosp Epidemiol 2023;44:926-33.  https://doi.org/10.1017/ice.2022.196
  31. Rolke R, Magerl W, Campbell KA, Schalber C, Caspari S, Birklein F, Treede RD. Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur J Pain 2006;10:77-88.  https://doi.org/10.1016/j.ejpain.2005.02.003
  32. Corah NL, O'Shea RM, Bissell GD, Thines TJ, Mendola P. The dentist-patient relationship: perceived dentist behaviors that reduce patient anxiety and increase satisfaction. J Am Dent Assoc 1988;116:73-6.  https://doi.org/10.14219/jada.archive.1988.0162
  33. Lee M, Song Y, You M, Park SY, Ihm J. Dentists' attitudes toward patient-centered care and its predictors: a cross-sectional study in South Korea. BMC Oral Health 2023;23:75. 
  34. Lindauer SJ, Sabol G, Isaacson RJ, Davidovitch M. Condylar movement and mandibular rotation during jaw opening. Am J Orthod Dentofacial Orthop 1995;107:573-7.  https://doi.org/10.1016/S0889-5406(95)70099-4
  35. Messerman T. A means for studying mandibular movements. J Prosthet Dent 1967;17:36-43.  https://doi.org/10.1016/0022-3913(67)90048-0
  36. Posselt U. Range of movement of the mandible. J Am Dent Assoc 1958;56:10-3.  https://doi.org/10.14219/jada.archive.1958.0017
  37. Posselt U. Physiology of occlusion and rehabilitation. 2nd ed. Oxford; Blackwell Scientific; 1962. p. 41, 56, 181. 
  38. Li XY, Jia C, Zhang ZC. The normal range of maximum mouth opening and its correlation with height or weight in the young adult Chinese population. J Dent Sci 2017;12:56-9.  https://doi.org/10.1016/j.jds.2016.09.002
  39. Park Y, Lee T, Seog M, Kim SO, Kim J, Kwon JS, Kang CM. An analysis of the temporomandibular joint range of motion and related factors in children and adolescents. Children (Basel) 2021;8:515. 
  40. Lewis RP, Buschang PH, Throckmorton GS. Sex differences in mandibular movements during opening and closing. Am J Orthod Dentofacial Orthop 2001;120:294-303.  https://doi.org/10.1067/mod.2001.115612
  41. Al-Dlaigan YH, Asiry MA. Maximum mouth opening in saudi adolescents. J Int Oral Health 2014;6:45-9. 
  42. Dario P, Guglielmelli E, Allotta B, Carrozza MC. Robotics for medical applications. IEEE Robot Autom Mag 1996;3:44-56.  https://doi.org/10.1109/100.540149
  43. Locsin RC. The co-existence of technology and caring in the theory of technological competency as caring in nursing. J Med Invest 2017;64:160-4.  https://doi.org/10.2152/jmi.64.160
  44. Adel S, Zaher A, El Harouni N, Venugopal A, Premjani P, Vaid N. Robotic applications in orthodontics: changing the face of contemporary clinical care. Biomed Res Int 2021;2021:9954615. 
  45. Ahmad P, Alam MK, Aldajani A, Alahmari A, Alanazi A, Stoddart M, Sghaireen MG. Dental robotics: a disruptive technology. Sensors (Basel) 2021;21:3308.