DOI QR코드

DOI QR Code

Research on safety assessment and application effect of nanomedical products in physical education

  • Zhuli Li (College of Physical Education, Huangshan University) ;
  • Song Peng (College of Physical Education, Sichuan University) ;
  • Gang Chen (College of Education, General Aviation Vocational College)
  • Received : 2022.05.09
  • Accepted : 2023.04.07
  • Published : 2023.09.25

Abstract

This study investigates the application of nano-composite materials in physical education, specifically focusing on improving the performance of sports hall flooring. The research centers on carbon nanotube reinforced polyvinyl chloride (PVC) composites, which offer enhanced mechanical properties and durability. The incorporation of carbon nanotubes as reinforcements in the PVC matrix provides notable benefits, including increased strength, improved thermal stability, electrical conductivity, and resistance to fatigue. The key parameters examined in this study are the weight percentage of carbon nanotubes and the temperature during the fabrication process. Through careful analysis, it is found that higher weight percentages of carbon nanotubes contribute to a more uniform dispersion within the PVC matrix, resulting in improved mechanical properties. Additionally, higher fabrication temperatures aid in repairing macroscopic defects, leading to enhanced overall performance. The findings of this study indicate that the utilization of carbon nanotube reinforced PVC composites can significantly enhance the strength and durability of sports hall flooring. By employing these advanced materials, the safety and suitability of physical education environments can be greatly improved. Furthermore, the insights gained from this research can contribute to the optimization of composite material design and fabrication techniques, not only in the field of physical education but also in various industries where composite materials find applications.

Keywords

Acknowledgement

This work was supported by Key research project of Educational Teaching Management of Anhui University Quality Project (number: 2022jxg1066): Research on the reform and practice of university physical education curriculum model under the guidance of OBE education concept.

References

  1. Ahmad, M.S., Mohamad, Z., Ratnam, C.T., Othman, N. and Ali, R.R. (2022), "Mechanical behaviours and thermal stabilities of irradiated epoxidized natural rubber/polyvinyl chloride/carbon nanotubes nanocomposites", Chem. Eng. Transact., 97, 385-390. https://doi.org/10.3303/CET2297065.
  2. Alimoradlu, K. and Zamani, A. (2022), "Hydrophobicity in nanocatalysis", Adv. Nano Res., 12(1), 49-63. http://doi.org/10.12989/ANR.2022.12.1.049.
  3. Alsultan Abdulmajeed, S. (2021), "Assessment of microstructure and surface effects on vibrational characteristics of public transportation", Adv. Nano Res., 11(1), 101-113. http://dx.doi.org/10.12989/ANR.2021.11.1.101.
  4. Atmane Hassen, A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. http://doi.org/10.12989/SCS.2015.19.2.369.
  5. Attia, A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. http://doi.org/10.12989/SCS.2015.18.1.187.
  6. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. http://doi.org/10.12989/SCS.2019.30.6.603.
  7. Barbaros, I., Yang, Y., Safaei, B., Yang, Z., Qin, Z. and Asmael, M. (2022), "State-of-the-art review of fabrication, application, and mechanical properties of functionally graded porous nanocomposite materials", Nanotechnol. Rev., 11(1), 321-371. https://doi.org/10.1515/ntrev-2022-0017.
  8. Behdinan, K. and Moradi-Dastjerdi, R. (2022), "Thermal buckling resistance of a lightweight lead-free piezoelectric nanocomposite sandwich plate", Adv. Nano Res., 12(6), 593-603. http://doi.org/10.12989/ANR.2022.12.6.593.
  9. Bellifa, H., Bakora, A., Tounsi, A., Bousahla Abdelmoumen, A. and Mahmoud, S.R. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. http://doi.org/10.12989/SCS.2017.25.3.257.
  10. Bennai, R., Atmane Hassen, A. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. http://doi.org/10.12989/SCS.2015.19.3.521.
  11. Cai, T., Zandi, Y., Agdas, A. S., Salmi, A., Issakhov, A., & Roco-Videla, A. (2021), "The compressive strength of concrete retrofitted with wind ash and steel slag pozzolans with a water-cement based polymers", Adv. Concr. Constr., 11(6), 507-519. https://doi.org/10.12989/ACC.2021.11.6.507.
  12. Chaht Fouzia, L., Kaci, A., Houari Mohammed Sid, A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. http://doi.org/10.12989/SCS.2015.18.2.425.
  13. Chen, T., Crosbie Robert, C., Anandkumarb, A., Melville, C. and Chan, J. (2021), "Optimized AI controller for reinforced concrete frame structures under earthquake excitation", Adv. Concr. Constr., 11(1), 1-9. https://doi.org/10.12989/ACC.2021.11.1.001.
  14. Cheng, F., Niu, B., Xu, N., Zhao, X. and Ahmad, A.M. (2023), "Fault detection and performance recovery design with deferred actuator replacement via a low-computation method", IEEE T. Auto. Sci. Eng., 1-11. https://doi.org/10.1109/TASE.2023.3300723.
  15. Cojocaru, A.M., Cojocaru, M., Jianu, A., Bucea-Manea-Tonis, R., Paun, D.G. and Ivan, P. (2022), "The impact of agile management and technology in teaching and practicing physical education and sports", Sustainability, 14(3), 1237. https://doi.org/10.3390/su14031237.
  16. Cuong Bui, H. (2022), "Buckling analysis of thin-walled circular hollow section members with and without longitudinal stiffeners", Struct. Eng. Mech., 81(2), 231-242. https://doi.org/10.12989/SEM.2022.81.2.231.
  17. Dai, W., Zand, Y., Sadighi, A.A., Selmi, A., Roco-Videla, A., Wakil, K. and Issakhov, A. (2021), "The economic and management use of rhododendron petals in potas-sium-ion nano batteries anode via efficient computer simulation", Adv. Nano Res., 10(6), 517-529. http://doi.org/10.12989/ANR.2021.10.6.517.
  18. Dehghanbanadaki, A., Rashid, A.S.A., Ahmad, K., Yunus, N.Z.M. and Said, K.N.M. (2022), "A computational estimation model for the subgrade reaction modulus of soil improved with DCM columns", Geomech. Eng., 28(4), 385. https://doi.org/10.12989/gae.2022.28.4.385.
  19. Deussom, R., Mwarey, D., Bayu, M., Abdullah, S.S. and Marcus, R. (2022), "Systematic review of performance-enhancing health worker supervision approaches in low- and middle-income countries", Human Resour. Health, 20(1), 2. https://doi.org/10.1186/s12960-021-00692-y.
  20. Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. https://doi.org/10.12989/SEM.2021.80.1.063.
  21. El-Sheikh, A.H., Qawariq, R.F. and Abdelghani, J.I. (2019), "Adsorption and magnetic solid-phase extraction of NSAIDs from pharmaceutical wastewater using magnetic carbon nanotubes: Effect of sorbent dimensions, magnetite loading and competitive adsorption study", Environ. Technol. Innov., 16, 100496. https://doi.org/10.1016/j.eti.2019.100496.
  22. Esparham, A., Moradikhou Amir, B., Andalib Faeze, K. and Avanaki Mohammad, J. (2021), "Strength characteristics of granulated ground blast furnace slag-based geopolymer concrete", Adv. Concr. Constr., 11(3), 219-229. https://doi.org/10.12989/ACC.2021.11.3.219.
  23. Gillespie, L.B. (2008), "Key competencies: Views from the gym floor", J. Phys. Educ. New Zealand, 41(3), 37-50.
  24. Guo, S., Zhao, X., Wang, H. and Xu, N. (2023), "Distributed consensus of heterogeneous switched nonlinear multiagent systems with input quantization and DoS attacks", Appl. Math. Comput., 456, 128127. https://doi.org/10.1016/j.amc.2023.128127.
  25. Han, S., Meng, Q., Pan, X., Liu, T., Zhang, S., Wang, Y., Haridy, S. and Araby, S. (2019), "Synergistic effect of graphene and carbon nanotube on lap shear strength and electrical conductivity of epoxy adhesives", J. Appl. Polym. Sci., 136(42), 48056. https://doi.org/10.1002/app.48056.
  26. Harifi, T. and Montazer, M. (2015), "Application of nanotechnology in sports clothing and flooring for enhanced sport activities, performance, efficiency and comfort: A review", J. Ind. Textiles, 46(5), 1147-1169. https://doi.org/10.1177/1528083715601512.
  27. Houari Mohammed Sid, A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. http://doi.org/10.12989/SCS.2016.22.2.257.
  28. Huang, S., Zong, G., Wang, H., Zhao, X. and Alharbi, K.H. (2023), "Command filter-based adaptive fuzzy self-triggered control for MIMO nonlinear systems with time-varying full-state constraints", Int. J. Fuzzy Syst., 1-18. https://doi.org/10.1007/s40815-023-01560-8.
  29. Iqbal Khan, Z., Habib, U., Binti Mohamad, Z., Razak Bin Rahmat, A. and Amira Sahirah Binti Abdullah, N. (2022), "Mechanical and thermal properties of sepiolite strengthened thermoplastic polymer nanocomposites: A comprehensive review", Alexandria Eng. J., 61(2), 975-990. https://doi.org/10.1016/j.aej.2021.06.015.
  30. Jagadeesh, P., Puttegowda, M., Oladijo, O.P., Lai, C.W., Gorbatyuk, S., Matykiewicz, D., Rangappa, S.M. and Siengchin, S. (2022), "A comprehensive review on polymer composites in railway applications", Polym. Compos., 43(3), 1238-1251. https://doi.org/10.1002/pc.26478.
  31. Kar Vishesh, R. and Panda Subrata, K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. http://doi.org/10.12989/SCS.2015.18.3.693.
  32. King, A.C., Stokols, D., Talen, E., Brassington, G.S. and Killingsworth, R. (2002), "Theoretical approaches to the promotion of physical activity: Forging a transdisciplinary paradigm", Am. J. Prevent. Med., 23(2, Supplement 1), 15-25. https://doi.org/10.1016/S0749-3797(02)00470-1.
  33. Li, M., Guo, Q., Chen, L., Li, L., Hou, H. and Zhao, Y. (2022), "Microstructure and properties of graphene nanoplatelets reinforced AZ91D matrix composites prepared by electromagnetic stirring casting", J. Mater. Res. Technol., 21, 4138-4150. https://doi.org/10.1016/j.jmrt.2022.11.033.
  34. Maheswaran, J., Chellapandian, M. and Kumar, V. (2022), "Behavior of GGBS concrete with pond ash as a partial replacement for sand", Adv. Concr. Constr., 13(3), 233-242. https://doi.org/10.12989/ACC.2022.13.3.233.
  35. Misener, L., Rich, K. and Pearson, E. (2022), "Tensions and opportunities in researching social change in sport management", Sport Manage. Rev., 25(2), 323-340. https://doi.org/10.1080/14413523.2021.1902123.
  36. Mishra, K., Devi, N., Siwal, S.S., Zhang, Q., Alsanie, W.F., Scarpa, F. and Thakur, V.K. (2022), "Ionic liquid-based polymer nanocomposites for sensors, energy, biomedicine, and environmental applications: Roadmap to the future", Adv. Sci., 9(26), 2202187. https://doi.org/10.1002/advs.202202187.
  37. Mohammadi, A., Ebadi, T. and Boroomand, M.R. (2020), "Interface shear between different oil-contaminated sand and construction materials", Geomech. Eng., 20(4), 299. https://doi.org/10.12989/gae.2020.20.4.299.
  38. Mousavi, S.R., Zamani, M.H., Estaji, S., Tayouri, M.I., Arjmand, M., Jafari, S.H., Nouranian, S. and Khonakdar, H.A. (2022a), "Mechanical properties of bamboo fiber-reinforced polymer composites: A review of recent case studies", J. Mater. Sci., 1-25. https://doi.org/10.3390/technologies10010032.
  39. Mousavi, S.R., Zamani, M.H., Estaji, S., Tayouri, M.I., Arjmand, M., Jafari, S.H., Nouranian, S. and Khonakdar, H.A. (2022b), "Mechanical properties of bamboo fiber-reinforced polymer composites: a review of recent case studies", J. Mater. Sci., 57(5), 3143-3167. https://doi.org/10.1007/s10853-021-06854-6.
  40. Norizan, M.N., Moklis, M.H., Demon, S.Z.N., Halim, N.A., Samsuri, A., Mohamad, I.S., Knight, V.F. and Abdullah, N. (2020), "Carbon nanotubes: Functionalisation and their application in chemical sensors", RSC Adv., 10(71), 43704-43732. https://doi.org/10.1039/D0RA09438B.
  41. Ogbonna, V.E., Popoola, A.P.I., Popoola, O.M. and Adeosun, S.O. (2022), "A review on the recent advances on improving the properties of epoxy nanocomposites for thermal, mechanical, and tribological applications: challenges and recommendations", Polym. Plast. Technol. Mater., 61(2), 176-195. https://doi.org/10.1080/25740881.2021.1967391.
  42. Olsen, O.E., Myklebust, G., Engebretsen, L., Holme, I. and Bahr, R. (2003), "Relationship between floor type and risk of ACL injury in team handball", Scandinavian J. Med. Sci. Sports, 13(5), 299-304. https://doi.org/10.1034/j.1600-0838.2003.00329.x.
  43. Raj, A., Sathyan, D. and Mini, K.M. (2021), "Performance evaluation of natural fiber reinforced high volume fly ash foam concrete cladding", Adv. Concr. Constr., 11(2), 151-161. https://doi.org/10.12989/ACC.2021.11.2.151.
  44. Shah, V., Bhaliya, J., Patel, G.M. and Deshmukh, K. (2022), "Advances in polymeric nanocomposites for automotive applications: A review", Polym. Adv. Technol., 33(10), 3023-3048. https://doi.org/10.1002/pat.5771.
  45. Shahram Ghaedi Faramoushjan Hossein Jalalifar, R.K. (2021), "Mathematical modelling and numerical study for buckling study in concrete beams containing carbon nanotubes", Adv. Concr. Constr., 11(6), 521-529. https://doi.org/10.12989/ACC.2021.11.6.521.
  46. Shariq, M., Pal, S., Chaubey, R. and Masood, A. (2022), "An experimental and analytical study into the strength of hooked-end steel fiber reinforced HVFA concrete", Adv. Concr. Constr., 13(1), 35-43. https://doi.org/10.12989/ACC.2022.13.1.035.
  47. Soltanieh, G., Yam Michael, C.H., Zhang, J.-Z. and Ke, K. (2022), "Closed-form solution for the buckling behavior of the delaminated FRP plates with a rectangular hole using super-elastic SMA stitches", Struct. Eng. Mech., 81(1), 39-50. https://doi.org/10.12989/SEM.2022.81.1.039.
  48. Su, Y., Zhou, M., Sui, G., Lan, J., Zhang, H. and Yang, X. (2020), "Polyvinyl butyral composites containing halloysite nanotubes/reduced graphene oxide with high dielectric constant and low loss", Chem. Eng. J., 394, 124910. https://doi.org/10.1016/j.cej.2020.124910.
  49. Su, Z., Meng, J. and Su, Y. (2023), "Application of SiO2 nanocomposite ferroelectric material in preparation of trampoline net for physical exercise", Adv. Nano Res., 14(4), 355-362. https://doi.org/10.12989/anr.2023.14.4.355
  50. Tang, F., Wang, H., Zhang, L., Xu, N. and Ahmad, A.M. (2023), "Adaptive optimized consensus control for a class of nonlinear multi-agent systems with asymmetric input saturation constraints and hybrid faults", Commun. Nonlinear Sci. Numer. Simul., 126, 107446. https://doi.org/10.1016/j.cnsns.2023.107446.
  51. Thakur, P., Chahar, D. and Thakur, A. (2022), "Visible light assisted photocatalytic degradation of methylene blue dye using Ni doped Co-Zn nanoferrites", Adv. Nano Res., 12(4), 415-426. http://doi.org/10.12989/ANR.2022.12.4.415.
  52. Tripathy, P. and Biswas, S. (2022), "Mechanical and thermal properties of mineral fiber based polymeric nanocomposites: A review", Polym. Plast. Technol. Mater., 61(13), 1385-1410. https://doi.org/10.1080/25740881.2022.2061996.
  53. Ugurlu, O.F. and Ozturk, C.A. (2021), "Experimental investigation for the use of tailings as paste-fill material through design of experiment", Geomech. Eng., 26(5), 465. https://doi.org/10.12989/gae.2021.26.5.465.
  54. Wang, T., Zhou, G., Wang, J. and Wang, D. (2020), "Impact of spatial variability of geotechnical properties on uncertain settlement of frozen soil foundation around an oil pipeline", Geomech. Eng., 20(1), 19. https://doi.org/10.12989/gae.2020.20.1.019.
  55. Wang, Y., Jia, Q. and Deng, T. (2023), "The role of nanotechnology in reducing the impact on the ball and increasing the speed of its movement", Geomech. Eng., 32(5), 463-474. https://doi.org/10.12989/gae.2023.32.5.463.
  56. Wu, J., Zheng, J., Sun, G. and Chang, X. (2022), "Experimental and numerical analyses on axial cyclic behavior of H-section aluminium alloy members", Struct. Eng. Mech., 81(1), 11-28. https://doi.org/10.12989/SEM.2022.81.1.011.
  57. Wu, W., Xu, N., Niu, B., Zhao, X. and Ahmad, A.M. (2023), "Low-computation adaptive saturated self-triggered tracking control of uncertain networked systems", Electronics, 12(13), 2771. https://doi.org/10.3390/electronics12132771
  58. Xiong, Z., Liu, Q. and Huang, X. (2022), "The influence of digital educational games on preschool Children's creative thinking", Comput. Educ., 189 104578. https://doi.org/10.1016/j.compedu.2022.104578.
  59. Zarga, D., Tounsi, A., Bousahla Abdelmoumen, A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. http://doi.org/10.12989/SCS.2019.32.3.389.
  60. Zhang, S., Hao, A., Nguyen, N., Oluwalowo, A., Liu, Z., Dessureault, Y., Park, J.G. and Liang, R. (2019), "Carbon nanotube/carbon composite fiber with improved strength and electrical conductivity via interface engineering", Carbon, 144, 628-638. https://doi.org/10.1016/j.carbon.2018.12.091.
  61. Zhao, K., Chen, Y., Yu, F., Jian, W., Zheng, M. and Zeng, H. (2022a), "A biodegradable magnesium alloy sample induced rat osteochondral defect repair through Wnt/β,-catenin signaling pathway", Adv. Nano Res., 12(3), 301-317. http://doi.org/10.12989/ANR.2022.12.3.301.
  62. Zhao, Y., Liu, K., Zhang, H., Tian, X., Jiang, Q., Murugadoss, V. and Hou, H. (2022b), "Dislocation motion in plastic deformation of nano polycrystalline metal materials: A phase field crystal method study", Adv. Compos. Hybrid Mater., 5(3), 2546-2556. https://doi.org/10.1007/s42114-022-00522-2.
  63. Zhao, Y., Niu, B., Zong, G., Zhao, X. and Alharbi, K.H. (2023), "Neural network-based adaptive optimal containment control for non-affine nonlinear multi-agent systems within an identifier-actor-critic framework", J. Franklin Inst., 360(12), 8118-8143. https://doi.org/10.1016/j.jfranklin.2023.06.014.
  64. Zheng, L.X., O'Connell, M.J., Doorn, S.K., Liao, X.Z., Zhao, Y.H., Akhadov, E.A., Hoffbauer, M.A., Roop, B.J., Jia, Q.X., Dye, R.C., Peterson, D.E., Huang, S.M., Liu, J. and Zhu, Y.T. (2004), "Ultralong single-wall carbon nanotubes", Nature Mater., 3(10), 673-676. https://doi.org/10.1038/nmat1216.
  65. Zhou, M., Liu, J., Yang, H. and Zhang, L. (2022), "A multi-scale analysis on reinforcement origin of static and dynamic mechanics in graphene-elastomer nanocomposites", Compos. Sci. Technol., 228, 109617. https://doi.org/10.1016/j.compscitech.2022.109617.