참고문헌
- Abdelrahman, A.A., Esen, I., Ozarpa, C., Shaltout, R., Eltaher, M. A. and Assie, A.E. (2021), "Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory", Smart Struct. Syst., 28(4), 515-533. https://doi.org/10.12989/sss.2021.28.4.515.
- Abdelrahman, A.A., and Eltaher, M.A. (2020), "On bending and buckling responses of perforated nanobeams including surface energy for different beams theories", Eng. Comput., 1-27. https://doi.org/10.1007/s00366-020-01211-8.
- Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermomagnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.3.231.
- Ali, F., Mohammad, D. and Moslem, M. (2011), "Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics", Physica E, 44(3), 719-727. https://doi.org/10.1016/j.physe.2011.11.022.
- Alkharabsheh, S.A., and Younis, M.I. (2013), "Dynamics of MEMS arches of flexible supports", J. Microelectromech. Syst., 12(1). https://doi.org/10.1109/JMEMS.2012.2226926.
- Andre, G., Ricardo, L.V., Amanda, C.M. and Ibere, L.C. (2019), "Nonlinear dynamics and chaos in micro/nanoelectron-mechanical beam resonators actuated by two-sided electrodes", Chaos Solit. Fract., 122, 6-16. https://doi.org/10.1016/j.chaos.2019.03.004.
- Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J. and Van Duyne, R.P. (2010), "Biosensing with plasmonic nanosensors", Nanosci. Technol. A, 7(6),308-319. https://doi.org/10.1142/9789814287005_0032.
- Arefi, M. (2018), "Analysis of a doubly curved piezoelectric nanoshell: nonlocal electroelastic bending solution", Eur. J. Mech. Solid, 70, 226-37. https://doi.org/10.1016/j.euromechsol.2018.02.012.
- Arpagaus, C., Collenberg, A., Rutti, D., Assadpour, E. and Jafari, S.M. (2018), "Nano spray drying for encapsulation of pharmaceuticals", Int. J. Pharm., 546(1-2), 194-214. https://doi.org/10.1016/j.ijpharm.2018.05.037
- Assadi, A. and M. Nazemizadeh (2021), "Size-dependent vibration analysis of stepped nanobeams based on surface elasticity theory", Int. J. Eng., 34(3), 744-749. https://dx.doi.org/10.5829/ije.2021.34.03c.20.
- Azandariani, M.G. and Nikzad A. (2022), "Eringen's nonlocal theory for nonlinear bending analysis of bidirectional functionally graded Timoshenko nanobeams", Adv. Nano Res., 12(1), 37-47. https://doi.org/10.12989/anr.2022.12.1.037.
- Bhushan, B. (2007), "Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/ BioNEMS materials and devices", Microelectron. Eng, 84(3), 387-412. https://doi.org/10.1016/j.mee.2006.10.059.
- Bornassi, S. and Haddadpour, H. (2017), "Nonlocal vibration, and pull-in instability analysis of electrostatic carbon-nanotube based NEMS devices", Sensors Actuat. A Phys., 266, 185-196. https://doi.org/10.1016/j.sna.2017.08.020.
- Cha, J., Kim, K.W. and Daraio, C. (2018), "Experimental realization of on-chip topological nanoelectromechanical metamaterials", Nature, 564, 229-233. https://doi.org/10.1038/s41586-018-0764-0.
- Civalek, O ., Dastjerdi, S., and Akgoz, B. (2022), "Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates", Mech. Based Des. Struct., 50(6), 1914-1931. https://doi.org/10.1080/15397734.2020.1766494.
- Ebrahimi, F., Dehghan, M., and Seyfi, A. (2019), "Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes", Adv. Nano Res., 7(1), 1. https://doi.org/10.12989/anr.2019.7.1.001.
- Ebrahimy, F., Hosseini, S.H.S. (2016a), "Nonlinear electroelastic vibration analysis of NEMS consisting of double-viscoelastic nanoplates", Appl Phys A, 122(922). https://doi.org/10.1007/s00339-016-0452-6.
- Ebrahimi, F., and Hosseini, S.H.S. (2016b), "Double nanoplate-based NEMS under hydrostatic and electrostatic actuation", Eur. Phys. J. Plus, 131(160). https://doi.org/10.1140/epjp/i2016-16160-1.
- Ekinci, K.L., and Roukes, M.L. (2005), "Nanoelectromechanical systems", Rev. Sci. Instrum, 76(6). https://doi.org/10.1063/1.1927327.
- Eltaher, M.A., Kabeel, A.M. and Almitani, K.H. (2018), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst Technol, 24, 4881-4893, https://doi.org/10.1007/s00542-018-3905-3.
- Eltaher M.A., Samir A. Emam and F.F. Mahmoud. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030.
- Eltaher M.A., M.E. Khater and Samir A. Emam. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Modell., 40(5-6), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026.
- Eltaher M.A., Mohamed N. (2020), "Nonlinear stability and vibration of imperfect CNTs by Doublet mechanics", Appl. Math. Comput., 382, 0096-3003. https://doi.org/10.1016/j.amc.2020.125311.
- Eltaher, M.A., Abdelrahman, A.A., and Esen, I. (2021), "Dynamic analysis of nanoscale Timoshenko CNTs based on doublet mechanics under moving load", Eur. Phys. J. Plus, 136(7), 1-21. https://doi.org/10.1140/epjp/s13360-021-01682-8.
- Eric W. Wong, Paul E. Sheehan and Charles M. Lieber, (1997), "Nanobeam mechanics: Easticity, strength, and toughness of nanorods and nanotubes", Science, 277(5334), 1971-1975. https://doi.org/10.1126/science.277.5334.1971.
- Eringen, A.C. (2002), "Nonlocal continuum field theories", Springer Sci. Business Med., 16. https://doi.org/10.1115/1.1553434.
- Eringen A.C. (2006), "Nonlocal continuum mechanics based on distributions", Int. J. Eng. Sci., 44(3-4), 141-147. https://doi.org/10.1016/j.ijengsci.2005.11.002.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4707. https://doi.org/10.1063/1.332803.
- Faraji-Oskouie M., Norouzzadeh A., Ansari R. and Rouhi H. (2019), "Bending of small-scale Timoshenko beams based on the integral/ differential nonlocal-micropolar elasticity theory: A finite element approach", Appl. Math. Mech., 40(6), 767-782. https://doi.org/10.1007/s10483-019-2491-9.
- Haynes, H. and Ramazan, A. (2013), "Nanotechnology safety in the aerospace industry", Nanotechnol. Safe., 85-97. https://doi.org/10.1016/B978-0-444-59438-9.00007-2.
- Jaan, L. and Lenbaum, A. (2018), "Free vibrations of stepped nano-beams", Int. J. Comput. Meth. Experim. Measure., 6(4), 716-725. https://doi.org/10.2495/CMEM-V6-N4-716-725.
- Jaan, L. and Lenbaum, A. (2019), "Natural vibrations of stepped nanobeams with defects", Acta Et Commentationes Universitatis Tartuensis De Mathematica, 23(1). https://doi.org/10.12697/ACUTM.2019.23.14.
- Judy, J.W. (2001), "Microelectromechanical systems (MEMS): fabrication, design, and applications", Smart Mater. Struct., 10(6). https://doi.org/10.1088/0964-1726/10/6/301.
- Kim, K.J. and Ahn, K.H. (2008), "Excitation gap of a nanoelectromechanical rod in magnetic fields", Physica E, 40(5), 1412-1414. https://doi.org/10.1016/j.physe.2007.09.027.
- Li, C. and Chou, T.W. (2006), "Elastic wave velocities in single-walled carbon nanotubes", Phys. Rev. B, 73(24). https://doi.org/10.1103/PhysRevB.73.245407.
- Li, C. and Chou, T.W. (2004), "Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators", Appl. Phys. Lett., 84(1), 121-123. https://doi.org/10.1063/1.1638623.
- Li, Y.S., and Xiao, T. (2021), "Free vibration of the one-dimensional piezoelectric quasicrystal microbeams based on modified couple stress theory", Appl. Math. Modell., 96, 733-750. https://doi.org/10.1016/j.apm.2021.03.028.
- Liew, K.M., Wong, C.H. and Tan, M.J. (2006), "Twisting effects of carbon nanotube bundles subjected to axial compression and tension", J. Appl. Phys., 99. https://doi.org/10.1063/1.2200409.
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Iijima, S. and Ichihashi, T. (1993), "Single-shell carbon nanotubes of 1-nm diameter", Nature, 363, 603-605. https://doi.org/10.1038/363603a0.
- Iijima S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.
- Liu, Y. and Reddy, J. (2011), "A nonlocal curved beam model based on a modified couple stress theory", Int. J. Struct. Stabil. Dynam., 11(3), 495-512. https://doi.org/10.1142/S0219455411004233.
- Lu, L. and Guo, X. and Zhao, J. (2018), "On the mechanics of Kirchhoff and Mindlin's plates incorporating surface energy", Int. J. Eng. Sci., 124(3), 24-40. https://doi.org/10.1016/j.ijengsci.2017.11.020.
- Lu, P., Lee, H.P. and Lu, C. (2006), "Dynamic properties of flexural beams using a nonlocal elasticity model", J. Appl. Phys., 99(7). https://doi.org/10.1063/1.2189213.
- Masih, L. and Mohammad R.H.Y. (2018), "An analytical method for free vibration of multi cracked and stepped nonlocal nanobeams based on wave approach", Results Phys., 11, 166-181. https://doi.org/10.1016/j.rinp.2018.08.046.
- Metin, A. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E, 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.
- Mesut, S. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradienttheory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013.
- Monaco, G.T., Fantuzzi, N., Fabbrocino, F. and Luciano, R. (2021), "Hygro-thermal vibrations and buckling of laminated nanoplates via nonlocal strain gradient theory", Compos. Struct., 262. https://doi.org/10.1016/j.compstruct.2020.113337.
- Murmu, T. and Adhikari S. (2010), "Nonlocal effects in the longitudinal vibration of double-nanorod systems", Physica E, 43(1), 415-422. https://doi.org/10.1016/j.physe.2010.08.023.
- Murmu, T. and Adhikari S. (2012), "Nonlocal elasticity-based vibration of initially pre-stressed coupled nanobeam systems", Eur. J. Mech. A Solids, 34, 52-62. https://doi.org/10.1016/j.euromechsol.2011.11.010.
- Nalbant, M.O. and Tekin, A. (2023), "Nano Yapilarda Yerel Olmayan Elastisite Teorisi Uygulamalari", Muhendislikte Oncu ve Cagdas Calismalar, 143-167.
- Nalbant, M.O., Bagdatli, S.M., and Tekin, A. (2023a), "Free vibrations analysis of stepped nanobeams using nonlocal elasticity theory", Scientia Iranica. https://doi.org/10.24200/sci.2023.61602.7395.
- Nalbant, M.O., Bagdatli, S.M., and Tekin, A. (2023b), "Investigation of free vibrations of stepped nanobeam embedded in elastic foundation", Proceedings in International Conference on Applied Engineering and Natural Sciences, 1(1), 445-452.
- Natarajan, S. and Chakraborty, S., Thangavel, M., Bordas, S., and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.
- Nayfeh, A.H. (1981), "Introduction to perturbation techniques", John Wiley, New York, U.S.A.
- Nayfeh, A.H and Mook, D.T. (1979), "Nonlinear oscillations", John Wiley, New York, U.S.A.
- Nix, W.D. and Gao, H. (1998), "Indentation size effects in crystalline materials: A law for strain gradient plasticity", J. Mech. Phys. Solids, 46, 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0.
- Raffaele, B., Luciano, F., Raimondo, L., Francesco, M. (2015), "A gradient Eringen model for functionally graded nanorods", Compos. Struct., 131, 1124-1131. https://doi.org/10.1016/j.compstruct.2015.06.077.
- Pradhan, S.C. and Phadikar, J.K. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound Vib., 325, (1-2), 206-223. https://doi.org/10.1016/j.jsv.2009.03.007.
- Saji, V.S., Choe, H.C. and Yeung, K.W.K. (2010), "Nanotechnology in biomedical applications: a review", Int. J. Nano Biomater., 3(2), 119-139. https://doi.org/10.1504/ijnbm.2010.037801.
- Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A. and Ordejon, P. (1999), "Ab initio structural elastic and vibrational properties of carbon nanotubes", Phys Rev B, 59, 12678-12688. https://doi.org/10.1103/PhysRevB.59.12678.
- Shaat, M. and Abdelkefi, A. (2017), "New insights on the applicability of Eringen's nonlocal theory", Int. J. Mech. Sci., 121, 67-75. https://doi.org/10.1016/j.ijmecsci.2016.12.013.
- Sharma, J.N. and Grover, D. (2012), "Thermoelastic vibration analysis of Mems/Nems plate resonators with voids", Acta Mech, 223, 167-187. https://doi.org/10.1007/s00707-011-0557-0.
- Sheikholeslami, M. (2009), "Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method", Comput. Method Appl. Mech. Eng., 344, 306-318. https://doi.org/10.1016/j.cma.2018.09.042.
- Siegmar R. and Ray H.B. (2002), "Actuators of individual carbon nanotubes", Current Appl. Phys., 2(4), 311-314. https://doi.org/10.1016/S1567-1739(02)00116-5.
- Suleyman M.B. (2015), "Non-linear vibration of nanobeams with various boundary conditions based on nonlocal elasticity theory", Compos. Part B Eng., 80, 43-52. https://doi.org/10.1016/j.compositesb.2015.05.030.
- Taghavi, N. and Nahvi, H. (2013), "Pull-in instability of cantilever and fixed-fixed nano switches" Eur. J. Mech. Solid., 41, 123-133. https://doi.org/10.1016/j.euromechsol.2013.03.003.
- Taima, M.S., Tamer, A.E. and Said, H.F. (2021), "Free vibration analysis of multi-stepped nonlocal Bernoulli-Euler beams using dynamic stiffness matrix method", J. Vib. Control, 27(7-8), 774-789. https://doi.org/10.1177/1077546320933470.
- Tekin, A., O zkaya, E. and Bagdatli, S.M. (2009), "Three-to-one internal resonance in multiple stepped beam systems", Appl. Math. Mech., 30, 1131-1142. https://doi.org/10.1007/s10483-009-0907-x.
- Thai, C.H., Ferreira, A.J.M., Nguyen-Xuan, H., and Phung-Van, P. (2021), "A size dependent meshfree model for functionally graded plates based on the nonlocal strain gradient theory", Compos. Struct., 272. https://doi.org/10.1016/j.compstruct.2021.114169.
- Ufuk, G., Metin A. and Guler, G. (2017), "Axial dynamics of a nanorod embedded in an elastic medium using doublet mechanics", Compos. Struct., 160, 1268-1278. https://doi.org/10.1016/j.compstruct.2016.11.023.
- Xie, W.C., Lee, H.P. and Lim, S.P. (2003), "Nonlinear dynamic analysis of mems switches by nonlinear modal analysis", Nonlinear Dyn., 31, 243-256. https://doi.org/10.1023/A:1022914020076.
- Yapanmis, B., Bagdatli, S.M. (2022), "Investigation of the nonlinear vibration behaviour and 3:1 internal resonance of the multi supported nanobeam", Zeitschrift fur Naturforschung A, 77(4), 305-321. https://doi.org/10.1515/zna-2021-0300.
- Yapanmis, B.E. (2023), "Nonlinear vibration and internal resonance analysis of microbeam with mass using the modified coupled stress theory", J. Vib. Eng. Technol., 11, 2167-2180. https://doi.org/10.1007/s42417-022-00694-7.
- Zhang, J. and Wan, L. (2011), "Application of the energy balance method to a nonlinear oscillator arising in the microelectron-mechanical system (MEMS)", Curr. Appl. Phys., 11, 482-485. https://doi.org/10.1016/j.cap.2010.08.037.
- Fan, Z., Kapadia, R., Leu, P. W., Zhang, X., Chueh, Y. L., Takei, K., ... and Javey, A. (2010), "Ordered arrays of dual-diameter nanopillars for maximized optical absorption", Nano Lett., 10(10), 3823-3827. https://doi.org/10.1021/nl1010788.