DOI QR코드

DOI QR Code

Investigation of nonlinear vibration behavior of the stepped nanobeam

  • Mustafa Oguz Nalbant (Department of Electronic and Automation, Soma Vocational School, Manisa Celal Bayar University) ;
  • Suleyman Murat Bagdatli (Department of Mechanical Engineering, Manisa Celal Bayar University) ;
  • Ayla Tekin (Department of Machinery and Metal Technologies, Soma Vocational School, Manisa Celal Bayar University)
  • 투고 : 2022.03.01
  • 심사 : 2023.07.31
  • 발행 : 2023.09.25

초록

Nonlinearity plays an important role in control systems and the application of design. For this reason, in addition to linear vibrations, nonlinear vibrations of the stepped nanobeam are also discussed in this manuscript. This study investigated the vibrations of stepped nanobeams according to Eringen's nonlocal elasticity theory. Eringen's nonlocal elasticity theory was used to capture the nanoscale effect. The nanoscale stepped Euler Bernoulli beam is considered. The equations of motion representing the motion of the beam are found by Hamilton's principle. The equations were subjected to nondimensionalization to make them independent of the dimensions and physical structure of the material. The equations of motion were found using the multi-time scale method, which is one of the approximate solution methods, perturbation methods. The first section of the series obtained from the perturbation solution represents a linear problem. The linear problem's natural frequencies are found for the simple-simple boundary condition. The second-order part of the perturbation solution is the nonlinear terms and is used as corrections to the linear problem. The system's amplitude and phase modulation equations are found in the results part of the problem. Nonlinear frequency-amplitude, and external frequency-amplitude relationships are discussed. The location of the step, the radius ratios of the steps, and the changes of the small-scale parameter of the theory were investigated and their effects on nonlinear vibrations under simple-simple boundary conditions were observed by making comparisons. The results are presented via tables and graphs. The current beam model can assist in designing and fabricating integrated such as nano-sensors and nano-actuators.

키워드

참고문헌

  1. Abdelrahman, A.A., Esen, I., Ozarpa, C., Shaltout, R., Eltaher, M. A. and Assie, A.E. (2021), "Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory", Smart Struct. Syst., 28(4), 515-533. https://doi.org/10.12989/sss.2021.28.4.515.
  2. Abdelrahman, A.A., and Eltaher, M.A. (2020), "On bending and buckling responses of perforated nanobeams including surface energy for different beams theories", Eng. Comput., 1-27. https://doi.org/10.1007/s00366-020-01211-8.
  3. Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermomagnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.3.231.
  4. Ali, F., Mohammad, D. and Moslem, M. (2011), "Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics", Physica E, 44(3), 719-727. https://doi.org/10.1016/j.physe.2011.11.022.
  5. Alkharabsheh, S.A., and Younis, M.I. (2013), "Dynamics of MEMS arches of flexible supports", J. Microelectromech. Syst., 12(1). https://doi.org/10.1109/JMEMS.2012.2226926.
  6. Andre, G., Ricardo, L.V., Amanda, C.M. and Ibere, L.C. (2019), "Nonlinear dynamics and chaos in micro/nanoelectron-mechanical beam resonators actuated by two-sided electrodes", Chaos Solit. Fract., 122, 6-16. https://doi.org/10.1016/j.chaos.2019.03.004.
  7. Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J. and Van Duyne, R.P. (2010), "Biosensing with plasmonic nanosensors", Nanosci. Technol. A, 7(6),308-319. https://doi.org/10.1142/9789814287005_0032.
  8. Arefi, M. (2018), "Analysis of a doubly curved piezoelectric nanoshell: nonlocal electroelastic bending solution", Eur. J. Mech. Solid, 70, 226-37. https://doi.org/10.1016/j.euromechsol.2018.02.012.
  9. Arpagaus, C., Collenberg, A., Rutti, D., Assadpour, E. and Jafari, S.M. (2018), "Nano spray drying for encapsulation of pharmaceuticals", Int. J. Pharm., 546(1-2), 194-214. https://doi.org/10.1016/j.ijpharm.2018.05.037
  10. Assadi, A. and M. Nazemizadeh (2021), "Size-dependent vibration analysis of stepped nanobeams based on surface elasticity theory", Int. J. Eng., 34(3), 744-749. https://dx.doi.org/10.5829/ije.2021.34.03c.20.
  11. Azandariani, M.G. and Nikzad A. (2022), "Eringen's nonlocal theory for nonlinear bending analysis of bidirectional functionally graded Timoshenko nanobeams", Adv. Nano Res., 12(1), 37-47. https://doi.org/10.12989/anr.2022.12.1.037.
  12. Bhushan, B. (2007), "Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/ BioNEMS materials and devices", Microelectron. Eng, 84(3), 387-412. https://doi.org/10.1016/j.mee.2006.10.059.
  13. Bornassi, S. and Haddadpour, H. (2017), "Nonlocal vibration, and pull-in instability analysis of electrostatic carbon-nanotube based NEMS devices", Sensors Actuat. A Phys., 266, 185-196. https://doi.org/10.1016/j.sna.2017.08.020.
  14. Cha, J., Kim, K.W. and Daraio, C. (2018), "Experimental realization of on-chip topological nanoelectromechanical metamaterials", Nature, 564, 229-233. https://doi.org/10.1038/s41586-018-0764-0.
  15. Civalek, O ., Dastjerdi, S., and Akgoz, B. (2022), "Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates", Mech. Based Des. Struct., 50(6), 1914-1931. https://doi.org/10.1080/15397734.2020.1766494.
  16. Ebrahimi, F., Dehghan, M., and Seyfi, A. (2019), "Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes", Adv. Nano Res., 7(1), 1. https://doi.org/10.12989/anr.2019.7.1.001.
  17. Ebrahimy, F., Hosseini, S.H.S. (2016a), "Nonlinear electroelastic vibration analysis of NEMS consisting of double-viscoelastic nanoplates", Appl Phys A, 122(922). https://doi.org/10.1007/s00339-016-0452-6.
  18. Ebrahimi, F., and Hosseini, S.H.S. (2016b), "Double nanoplate-based NEMS under hydrostatic and electrostatic actuation", Eur. Phys. J. Plus, 131(160). https://doi.org/10.1140/epjp/i2016-16160-1.
  19. Ekinci, K.L., and Roukes, M.L. (2005), "Nanoelectromechanical systems", Rev. Sci. Instrum, 76(6). https://doi.org/10.1063/1.1927327.
  20. Eltaher, M.A., Kabeel, A.M. and Almitani, K.H. (2018), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst Technol, 24, 4881-4893, https://doi.org/10.1007/s00542-018-3905-3.
  21. Eltaher M.A., Samir A. Emam and F.F. Mahmoud. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030.
  22. Eltaher M.A., M.E. Khater and Samir A. Emam. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Modell., 40(5-6), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026.
  23. Eltaher M.A., Mohamed N. (2020), "Nonlinear stability and vibration of imperfect CNTs by Doublet mechanics", Appl. Math. Comput., 382, 0096-3003. https://doi.org/10.1016/j.amc.2020.125311.
  24. Eltaher, M.A., Abdelrahman, A.A., and Esen, I. (2021), "Dynamic analysis of nanoscale Timoshenko CNTs based on doublet mechanics under moving load", Eur. Phys. J. Plus, 136(7), 1-21. https://doi.org/10.1140/epjp/s13360-021-01682-8.
  25. Eric W. Wong, Paul E. Sheehan and Charles M. Lieber, (1997), "Nanobeam mechanics: Easticity, strength, and toughness of nanorods and nanotubes", Science, 277(5334), 1971-1975. https://doi.org/10.1126/science.277.5334.1971.
  26. Eringen, A.C. (2002), "Nonlocal continuum field theories", Springer Sci. Business Med., 16. https://doi.org/10.1115/1.1553434.
  27. Eringen A.C. (2006), "Nonlocal continuum mechanics based on distributions", Int. J. Eng. Sci., 44(3-4), 141-147. https://doi.org/10.1016/j.ijengsci.2005.11.002.
  28. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4707. https://doi.org/10.1063/1.332803.
  29. Faraji-Oskouie M., Norouzzadeh A., Ansari R. and Rouhi H. (2019), "Bending of small-scale Timoshenko beams based on the integral/ differential nonlocal-micropolar elasticity theory: A finite element approach", Appl. Math. Mech., 40(6), 767-782. https://doi.org/10.1007/s10483-019-2491-9.
  30. Haynes, H. and Ramazan, A. (2013), "Nanotechnology safety in the aerospace industry", Nanotechnol. Safe., 85-97. https://doi.org/10.1016/B978-0-444-59438-9.00007-2.
  31. Jaan, L. and Lenbaum, A. (2018), "Free vibrations of stepped nano-beams", Int. J. Comput. Meth. Experim. Measure., 6(4), 716-725. https://doi.org/10.2495/CMEM-V6-N4-716-725.
  32. Jaan, L. and Lenbaum, A. (2019), "Natural vibrations of stepped nanobeams with defects", Acta Et Commentationes Universitatis Tartuensis De Mathematica, 23(1). https://doi.org/10.12697/ACUTM.2019.23.14.
  33. Judy, J.W. (2001), "Microelectromechanical systems (MEMS): fabrication, design, and applications", Smart Mater. Struct., 10(6). https://doi.org/10.1088/0964-1726/10/6/301.
  34. Kim, K.J. and Ahn, K.H. (2008), "Excitation gap of a nanoelectromechanical rod in magnetic fields", Physica E, 40(5), 1412-1414. https://doi.org/10.1016/j.physe.2007.09.027.
  35. Li, C. and Chou, T.W. (2006), "Elastic wave velocities in single-walled carbon nanotubes", Phys. Rev. B, 73(24). https://doi.org/10.1103/PhysRevB.73.245407.
  36. Li, C. and Chou, T.W. (2004), "Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators", Appl. Phys. Lett., 84(1), 121-123. https://doi.org/10.1063/1.1638623.
  37. Li, Y.S., and Xiao, T. (2021), "Free vibration of the one-dimensional piezoelectric quasicrystal microbeams based on modified couple stress theory", Appl. Math. Modell., 96, 733-750. https://doi.org/10.1016/j.apm.2021.03.028.
  38. Liew, K.M., Wong, C.H. and Tan, M.J. (2006), "Twisting effects of carbon nanotube bundles subjected to axial compression and tension", J. Appl. Phys., 99. https://doi.org/10.1063/1.2200409.
  39. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  40. Iijima, S. and Ichihashi, T. (1993), "Single-shell carbon nanotubes of 1-nm diameter", Nature, 363, 603-605. https://doi.org/10.1038/363603a0.
  41. Iijima S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.
  42. Liu, Y. and Reddy, J. (2011), "A nonlocal curved beam model based on a modified couple stress theory", Int. J. Struct. Stabil. Dynam., 11(3), 495-512. https://doi.org/10.1142/S0219455411004233.
  43. Lu, L. and Guo, X. and Zhao, J. (2018), "On the mechanics of Kirchhoff and Mindlin's plates incorporating surface energy", Int. J. Eng. Sci., 124(3), 24-40. https://doi.org/10.1016/j.ijengsci.2017.11.020.
  44. Lu, P., Lee, H.P. and Lu, C. (2006), "Dynamic properties of flexural beams using a nonlocal elasticity model", J. Appl. Phys., 99(7). https://doi.org/10.1063/1.2189213.
  45. Masih, L. and Mohammad R.H.Y. (2018), "An analytical method for free vibration of multi cracked and stepped nonlocal nanobeams based on wave approach", Results Phys., 11, 166-181. https://doi.org/10.1016/j.rinp.2018.08.046.
  46. Metin, A. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E, 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.
  47. Mesut, S. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradienttheory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013.
  48. Monaco, G.T., Fantuzzi, N., Fabbrocino, F. and Luciano, R. (2021), "Hygro-thermal vibrations and buckling of laminated nanoplates via nonlocal strain gradient theory", Compos. Struct., 262. https://doi.org/10.1016/j.compstruct.2020.113337.
  49. Murmu, T. and Adhikari S. (2010), "Nonlocal effects in the longitudinal vibration of double-nanorod systems", Physica E, 43(1), 415-422. https://doi.org/10.1016/j.physe.2010.08.023.
  50. Murmu, T. and Adhikari S. (2012), "Nonlocal elasticity-based vibration of initially pre-stressed coupled nanobeam systems", Eur. J. Mech. A Solids, 34, 52-62. https://doi.org/10.1016/j.euromechsol.2011.11.010.
  51. Nalbant, M.O. and Tekin, A. (2023), "Nano Yapilarda Yerel Olmayan Elastisite Teorisi Uygulamalari", Muhendislikte Oncu ve Cagdas Calismalar, 143-167.
  52. Nalbant, M.O., Bagdatli, S.M., and Tekin, A. (2023a), "Free vibrations analysis of stepped nanobeams using nonlocal elasticity theory", Scientia Iranica. https://doi.org/10.24200/sci.2023.61602.7395.
  53. Nalbant, M.O., Bagdatli, S.M., and Tekin, A. (2023b), "Investigation of free vibrations of stepped nanobeam embedded in elastic foundation", Proceedings in International Conference on Applied Engineering and Natural Sciences, 1(1), 445-452.
  54. Natarajan, S. and Chakraborty, S., Thangavel, M., Bordas, S., and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.
  55. Nayfeh, A.H. (1981), "Introduction to perturbation techniques", John Wiley, New York, U.S.A.
  56. Nayfeh, A.H and Mook, D.T. (1979), "Nonlinear oscillations", John Wiley, New York, U.S.A.
  57. Nix, W.D. and Gao, H. (1998), "Indentation size effects in crystalline materials: A law for strain gradient plasticity", J. Mech. Phys. Solids, 46, 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0.
  58. Raffaele, B., Luciano, F., Raimondo, L., Francesco, M. (2015), "A gradient Eringen model for functionally graded nanorods", Compos. Struct., 131, 1124-1131. https://doi.org/10.1016/j.compstruct.2015.06.077.
  59. Pradhan, S.C. and Phadikar, J.K. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound Vib., 325, (1-2), 206-223. https://doi.org/10.1016/j.jsv.2009.03.007.
  60. Saji, V.S., Choe, H.C. and Yeung, K.W.K. (2010), "Nanotechnology in biomedical applications: a review", Int. J. Nano Biomater., 3(2), 119-139. https://doi.org/10.1504/ijnbm.2010.037801.
  61. Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A. and Ordejon, P. (1999), "Ab initio structural elastic and vibrational properties of carbon nanotubes", Phys Rev B, 59, 12678-12688. https://doi.org/10.1103/PhysRevB.59.12678.
  62. Shaat, M. and Abdelkefi, A. (2017), "New insights on the applicability of Eringen's nonlocal theory", Int. J. Mech. Sci., 121, 67-75. https://doi.org/10.1016/j.ijmecsci.2016.12.013.
  63. Sharma, J.N. and Grover, D. (2012), "Thermoelastic vibration analysis of Mems/Nems plate resonators with voids", Acta Mech, 223, 167-187. https://doi.org/10.1007/s00707-011-0557-0.
  64. Sheikholeslami, M. (2009), "Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method", Comput. Method Appl. Mech. Eng., 344, 306-318. https://doi.org/10.1016/j.cma.2018.09.042.
  65. Siegmar R. and Ray H.B. (2002), "Actuators of individual carbon nanotubes", Current Appl. Phys., 2(4), 311-314. https://doi.org/10.1016/S1567-1739(02)00116-5.
  66. Suleyman M.B. (2015), "Non-linear vibration of nanobeams with various boundary conditions based on nonlocal elasticity theory", Compos. Part B Eng., 80, 43-52. https://doi.org/10.1016/j.compositesb.2015.05.030.
  67. Taghavi, N. and Nahvi, H. (2013), "Pull-in instability of cantilever and fixed-fixed nano switches" Eur. J. Mech. Solid., 41, 123-133. https://doi.org/10.1016/j.euromechsol.2013.03.003.
  68. Taima, M.S., Tamer, A.E. and Said, H.F. (2021), "Free vibration analysis of multi-stepped nonlocal Bernoulli-Euler beams using dynamic stiffness matrix method", J. Vib. Control, 27(7-8), 774-789. https://doi.org/10.1177/1077546320933470.
  69. Tekin, A., O zkaya, E. and Bagdatli, S.M. (2009), "Three-to-one internal resonance in multiple stepped beam systems", Appl. Math. Mech., 30, 1131-1142. https://doi.org/10.1007/s10483-009-0907-x.
  70. Thai, C.H., Ferreira, A.J.M., Nguyen-Xuan, H., and Phung-Van, P. (2021), "A size dependent meshfree model for functionally graded plates based on the nonlocal strain gradient theory", Compos. Struct., 272. https://doi.org/10.1016/j.compstruct.2021.114169.
  71. Ufuk, G., Metin A. and Guler, G. (2017), "Axial dynamics of a nanorod embedded in an elastic medium using doublet mechanics", Compos. Struct., 160, 1268-1278. https://doi.org/10.1016/j.compstruct.2016.11.023.
  72. Xie, W.C., Lee, H.P. and Lim, S.P. (2003), "Nonlinear dynamic analysis of mems switches by nonlinear modal analysis", Nonlinear Dyn., 31, 243-256. https://doi.org/10.1023/A:1022914020076.
  73. Yapanmis, B., Bagdatli, S.M. (2022), "Investigation of the nonlinear vibration behaviour and 3:1 internal resonance of the multi supported nanobeam", Zeitschrift fur Naturforschung A, 77(4), 305-321. https://doi.org/10.1515/zna-2021-0300.
  74. Yapanmis, B.E. (2023), "Nonlinear vibration and internal resonance analysis of microbeam with mass using the modified coupled stress theory", J. Vib. Eng. Technol., 11, 2167-2180. https://doi.org/10.1007/s42417-022-00694-7.
  75. Zhang, J. and Wan, L. (2011), "Application of the energy balance method to a nonlinear oscillator arising in the microelectron-mechanical system (MEMS)", Curr. Appl. Phys., 11, 482-485. https://doi.org/10.1016/j.cap.2010.08.037.
  76. Fan, Z., Kapadia, R., Leu, P. W., Zhang, X., Chueh, Y. L., Takei, K., ... and Javey, A. (2010), "Ordered arrays of dual-diameter nanopillars for maximized optical absorption", Nano Lett., 10(10), 3823-3827. https://doi.org/10.1021/nl1010788.