Acknowledgement
The supports which are provide by the National Natural Science Foundation of China (No. 41941018, No.51936009 and No. 51721004) for the completion of this work are gratefully acknowledged.
References
- Abchouyeh, M.A., Mohebbi, R. and Fard, O.S. (2018), "Lattice boltzmann simulation of nanofluid natural convection heat transfer in a channel with a sinusoidal obstacle", Int. J. Mod. Phys. C., 29(9). https://doi.org/10.1142/S0129183118500791.
- Abedini, A., Armaghani, T. and Chamkha, A. J. (2019), "MHD free convection heat transfer of a water-Fe3O4 nanofluid in a baffled C-shaped enclosure", J. Therm. Anal. Calorim., 135(1), 685-695. https://doi.org/10.1007/s10973-018-7225-8.
- Babar, H. and Ali, H.M. (2019), "Towards hybrid nanofluids: preparation, thermophysical properties, applications, and challenges", J. Mol. Liq., 281, 598-633. https://doi.org/10.1016/j.molliq.2019.02.102.
- Beriache, M., Sidik, N.A.C., Yazid, M.N.A.W.M., Mamat, R., Najafi, G. and Kefayati, G.H.R. (2016), "A review on why researchers apply external magnetic field on nanofluids", Int. Commun. Heat Mass Transf., 78, 60-67. https://doi.org/10.1016/j.icheatmasstransfer.2016.08.023.
- Boujelbene, M., Rehman, S., Alqahtani, S., Alshehery, S. and Eldin, S.M. (2023), "Thermal transport and magnetohydrodynamics flow of generalized Newtonian nanofluid with inherent irreversibility between conduit with slip at the walls", Eng. Appl. Comp. Fluid, 17(1), 2182364. https://doi.org/10.1080/19942060.2023.2182364.
- Bouselsal, M., Mebarek-Oudina, F., Biswas, N. and Ismail, A.I. (2023), "Heat transfer enhancement using Al2O3-MWCNT hybrid-nanofluid inside a tube/shell heat exchanger with different tube shapes", Micromachines, 14, 1072. https://doi.org/10.3390/mi14051072.
- Brinkman, H.C. (1952), "The viscosity of concentrated suspensions and solutions", J. Chem. Phys., 20(4), 571. https://doi.org/10.1063/1.1700493.
- Cardellini, A., Fasano, M., Bozorg Bigdeli, M., Chiavazzo, E. and Asinari, P. (2016), "Thermal transport phenomena in nanoparticle suspensions", J. Phys. Condens. Matter., 28(48). https://doi.org/10.1088/0953-8984/28/48/483003.
- Chabani, I., Mebarek-Oudina, F., Vaidya, H. and Ismail, A.I. (2022), "Numerical analysis of magnetic hybrid Nano-fluid natural convective flow in an adjusted porous trapezoidal enclosure", J. Magn. Magn. Mater., 564, 170142. https://doi.org/10.1016/j.jmmm.2022.170142.
- Dai, W.S., Zand, Y., Agdas, A.S., Selmi, A., Roco-Videla, A., Wakil, K. and Issakhov, A. (2021), "The economic and management use of rhododendron petals in potas-sium-ion nano batteries anode via efficient computer simulation", Adv. Nano Res., 10(6), 503-515. https://doi.org/10.12989/anr.2021.10.6.503.
- Darbari, B., Rashidi, S. and Keshmiri, A. (2020), "Nanofluid heat transfer and entropy generation inside a triangular duct equipped with delta winglet vortex generators", J. Therm. Anal. Calorim., 140(3), 1045-1055. https://doi.org/10.1007/s10973-019-08382-7.
- Dong, B., Zhou, X., Zhang, Y., Chen, C. and Li, W. (2018), "Numerical simulation of thermal flow of power-law fluids using lattice boltzmann method on non-orthogonal grids", Int. J. Heat Mass Transf., 126, 293-305. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.003.
- Ergun, S. (1952), "Fluid flow through packed columns", Chem. Eng. Prog., 48.
- Farooq, U., Akhtar, K., Abbasi, M.M., Hussain, M. and Aldandani, M.(2023), "Convective heat transfer performance of MHD nanofluid flow with temperature dependent viscosity over stretching surface", Z Angew Math Mech., 1-13. https://doi.org/10.1002/zamm.202300053.
- Guo, Z. and Zhao, T.S. (2002), "Lattice boltzmann model for incompressible flows through porous media", Phys. Rev. E, 66(3), 1-9. https://doi.org/10.1103/PhysRevE.66.036304.
- Guo, Z. and Zheng, C. (2008), "Analysis of lattice boltzmann equation for microscale gas flows: relaxation times, boundary conditions and the knudsen layer", Int. J. Comut. Fluid Dyn., 22(7), 465-473. https://doi.org/10.1080/10618560802253100.
- Guo, Z.L., Zheng C.G., (2008), Theory and Applications of Lattice Boltzmann Method, Science Press, Beijing, China.
- Habibzadeh, S., Kazemi-Beydokhti, A., Khodadadi, A. A., Mortazavi, Y., Omanovic, S. and Shariat-Niassar, M. (2010), "Stability and thermal conductivity of nanofluids of tin dioxide synthesized via microwave-induced combustion route", Chem. Eng. J., 156(2), 471-478. https://doi.org/10.1016/j.cej.2009.11.007.
- Hamilton, R. L. (1962), "Thermal conductivity of heterogeneous two-component systems", Ind. Eng. Chem. Fundam., 1(3), 187-191. https://doi.org/10.1021/i160003a005.
- He, Y.L., Wang Y., Li Q. (2008), Lattice Boltzmann Method: Theory and Applications, Science Press, Beijing, China.
- Iqbal, W., Jalil, M., Qazaq, A., Khadimallah, M.A., Naeem, M.N., Hussain, M., Mahmoud, S.R., Ghandourah, E. and Tounsi, A. (2021), "Effect of suction on flow of dusty fluid along exponentially stretching cylinder", Adv. Nano Res., 10(3), 263-270. https://doi.org/10.12989/anr.2021.10.3.263.
- Izadi, M., Hoghoughi, G., Mohebbi, R. and Sheremet, M. (2018), "Nanoparticle migration and natural convection heat transfer of Cu-water nanofluid inside a porous undulant-wall enclosure using LTNE and two-phase model", J. Mol. Liq., 261, 357-372. https://doi.org/10.1016/j.molliq.2018.04.063.
- Kadhim, H.T., Dulaimi, Z.M.A. and Rona, A. (2023), "Local thermal non-equilibrium analysis of Cu-Al2O3 hybrid nanofluid natural convection in a partially layered porous enclosure with wavy walls", J. Appl. Comput. Mech., 9(3), 712-727. https://doi.org/10.22055/jacm.2022.42046.3863.
- Kang, X., Liao, Q., Zhu, X. and Yang, Y. (2010), "Non-equilibrium extrapolation method in the lattice boltzmann simulations of flows with curved boundaries (non-equilibrium extrapolation of LBM)", Appl. Therm. Eng., 30(13), 1790-1796. https://doi.org/10.1016/j.applthermaleng.2010.03.032.
- Khan, M.I., Khan, W.A., Waqas, M., Kadry, S., Chu, Y.M. and Ali, Z. (2020), "Numerical simulation for MHD Darcy-Forchheimer three-dimensional stagnation point flow by a rotating disk with activation energy and partial slip", Appl. Nanosci., 10, 5469-5477. https://doi.org/10.1007/s13204-020-01517-5.
- Khan, U., Mebarek-Oudina, F., Zaib, A., Ishak, A., Bakar, S.A., Sherif, E.S.M. and Baleanu, D. (2022), "An exact solution of a Casson fluid flow induced by dust particles with hybrid nanofluid over a stretching sheet subject to Lorentz forces", Wave Random Complex, 1-14. https://doi.org/10.1080/17455030.2022.2102689.
- Li, Z., Sheikholeslami, M., Mittal, A. S., Shafee, A. and Haq, R. (2019), "Nanofluid heat transfer in a porous duct in the presence of Lorentz forces using the lattice boltzmann method", Eur. Phys. J. Plus., 134(1). https://doi.org/10.1140/epjp/i2019-12406-8.
- Ma, Y., Mohebbi, R., Rashidi, M.M., Yang, Z. and Sheremet, M. (2020), "Nanoliquid thermal convection in I-shaped multiple-pipe heat exchanger under magnetic field influence", Phys. A, 550, 124028. https://doi.org/10.1016/j.physa.2019.124028.
- Manna, N.K., Mondal, M.K. and Biswas, N. (2021), "A novel multi-banding application of magnetic field to convective transport system filled with porous medium and hybrid nanofluid", Phys. Scr. 96. https://doi.org/10.1088/1402-4896/abecbf.
- Mebarek-Oudina, F. (2018), "Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source", Heat Transf. Asian Res., 1-13. https://doi.org/10.1002/htj.21375.
- Mebarek-Oudina, F., Chabani, I. (2022), "Review on nano-fluids applications and heat transfer enhancement techniques in different enclosures", J. Nanofluids, 11, 155-168. https://doi.org/10.1166/jon.2022.1834.
- Mebarek-Oudina, F., Preeti, Sabu, A.S., Vaidya, H., Lewis, R.W., Areekara, S., Mathew, A. and Ismail A.I. (2023), "Hydromagnetic flow of magnetite-water nanofluid utilizing adapted Buongiorno model", Int. J. Mod. Phys. B, 2450003. https://doi.org/10.1142/S0217979224500036.
- Mohamad, A.A. (2015), Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes, Publishing House of Electronics Industry, Beijing, China.
- Mondal, S., Dey, A. and Pal, U. (2016), "Low temperature wet-chemical synthesis of spherical hydroxyapatite nanoparticles and their in situ cytotoxicity study", Adv. Nano Res., 4(4), 295-307. https://doi.org/10.12989/anr.2016.4.4.295.
- Murali Krishna, V. and Sandeep Kumar, M. (2019), "Numerical analysis of forced convective heat transfer of nanofluids in microchannel for cooling electronic equipment", Mater. Today Proc., 17, 295-302. https://doi.org/10.1016/j.matpr.2019.06.433.
- Nfawa, S.R., Abu Talib, A.R., Basri, A.A. and Masuri, S.U. (2021), "Novel use of MgO nanoparticle additive for enhancing the thermal conductivity of CuO/Water nanofluid", Case Stud. Therm. Eng., 27(6), 101279. https://doi.org/10.1016/j.csite.2021.101279.
- Patel, H.E., Das, S.K., Sundararajan, T., Sreekumaran Nair, A., George, B. and Pradeep, T. (2003), "Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects", Appl. Phys. Lett., 83(14), 2931-2933. https://doi.org/10.1063/1.1602578.
- Ramesh, K., Mebarek-Oudina, F., Ismail, A.I., Jaiswal, B.R., Warke, A.S., Lodhi, R.K. and Sharma, T. (2023), "Computational analysis of radiative non-Newtonian Carreau nanofluid flow in a microchannel under the magnetic properties", Sci. Iran. B., 30(2), 376-390. https://doi.org/10.24200/sci.2022.58629.5822.
- Rao, S. and Deka, P.N. (2023), "A study on MHD flow of SWCNT-Al2O3/water hybrid nanofluid past a vertical permeable cone under the influence of thermal radiation and chemical reactions", Numer. Heat Transf. A, 1-21. https://doi.org/10.1080/10407782.2023.2207731.
- Raza, J., Mebarek-Oudina, F. and Lund, L.A. (2022), "The flow of magnetised convective Casson liquid via a porous channel with shrinking and stationary walls", Pramana J. Phys., 96(4), 1-10. https://doi.org/10.1007/s12043-022-02465-1.
- Sajjadi, H., Amiri Delouei, A., Izadi, M. and Mohebbi, R. (2018), "Investigation of MHD natural convection in a porous media by double MRT lattice boltzmann method utilizing MWCNT-Fe3O4/water hybrid nanofluid", Int. J. Heat Mass Transf., 132, 1087-1104. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.060.
- Salehi, A., Abbassi, A. and Nazari, M. (2014), "Numerical solution of fluid flow and conjugate heat transfer in a channel filled with fibrous porous media - a lattice boltzmann method approach", J. Porous Media., 17(12), 1075-1091. https://doi.org/10.1615/JPorMedia.v17.i12.50.
- Sharif, H., Khadimallah, M.A., Naeem, M.N., Hussain, M., Hussain, S. and Tounsi, A. (2021), "Flow of MHD Powell-Eyring nanofluid: Heat absorption and Cattaneo-Christov heat flux model", Adv. Nano Res., 10(3), 221-234. https://doi.org/10.12989/anr.2021.10.3.221.
- Shafiq, A., Mebarek-Oudina, F., Sindhu, T.N. and Rasool, G. (2022), "Sensitivity analysis for Walters-B nanoliquid flow over a radiative Riga surface by RSM", Sci. Iran. B, 29 (3), 1236-1249. https://doi.org/10.24200/sci.2021.58293.5662.
- Sheikholeslami, M. and Ganji, D.D. (2016), "Nanofluid convective heat transfer using semi analytical and numerical approaches: a review", J. Taiwan Inst. Chem. Eng., 65, 43-77. https://doi.org/10.1016/j.jtice.2016.05.014.
- Sheikholeslami, M., Gorji-Bandpy, M. and Ganji, D.D. (2014), "MHD free convection in an eccentric semi-annulus filled with nanofluid", J. Taiwan Inst. Chem. Eng., 45(4), 1204-1216. http://dx.doi.org/10.1016/j.jtice.2014.03.010.
- Sheikholeslami, M., Keramati, H., Shafee, A., Li, Z., Alawad, O.A. and Tlili, I. (2019), "Nanofluid MHD forced convection heat transfer around the elliptic obstacle inside a permeable lid drive 3D enclosure considering lattice boltzmann method", Phys. A, 523, 87-104, https://doi.org/10.1016/j.physa.2019.02.014.
- Singh, S.P., Verma, A.K., Jaiswal, A.K., Singh, D. and Yadav, R.R. (2021), "Study of ultrasonic and thermal properties for heat transfer enhancement in Fe2O3 nanoparticles-ethylene glycol nanofluids", Int. J. Thermophys., 42(4), 1-17. https://doi.org/10.1007/s10765-021-02809-w.
- Yan, Y.Y. and Zu, Y.Q. (2008), "Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder - a LBM approach", Int. J. Heat Mass Transf., 51(9-10), 2519-2536. https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.053.
- Yu, W. and Choi, S.U.S. (2004), "The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model", J. Nanopart. Res., 6(4), 355-361. https://doi.org/10.1007/s11051-004-2601-7.
- Yusoff, A.H.M., Salimi, M.N. and Jamlos, M.F. (2018), "A review: Synthetic strategy control of magnetite nanoparticles production", Adv. Nano Res., 6(1), 1-19. https://doi.org/10.12989/anr.2018.6.1.001.