DOI QR코드

DOI QR Code

Ammonia Decomposition over Ni Catalysts Supported on Zeolites for Clean Hydrogen Production

청정수소 생산을 위한 암모니아 분해 반응에서 Ni/Zeolite 촉매의 반응활성에 관한 연구

  • Jiyu Kim (Hydrogen Research Department, Korea Institute of Energy Research (KIER)) ;
  • Kyoung Deok Kim (Hydrogen Research Department, Korea Institute of Energy Research (KIER)) ;
  • Unho Jung (Hydrogen Research Department, Korea Institute of Energy Research (KIER)) ;
  • Yongha Park (Hydrogen Research Department, Korea Institute of Energy Research (KIER)) ;
  • Ki Bong Lee (Advanced Energy and System Engineering, University of Science and Technology (UST)) ;
  • Kee Young Koo (Hydrogen Research Department, Korea Institute of Energy Research (KIER))
  • 김지유 (한국에너지기술연구원 수소연구단) ;
  • 김경덕 (한국에너지기술연구원 수소연구단) ;
  • 정운호 (한국에너지기술연구원 수소연구단) ;
  • 박용하 (한국에너지기술연구원 수소연구단) ;
  • 이기봉 (고려대학교 화공생명공학과) ;
  • 구기영 (한국에너지기술연구원 수소연구단)
  • Received : 2023.09.05
  • Accepted : 2023.09.24
  • Published : 2023.09.30

Abstract

Hydrogen, a clean energy source free of COx emissions, is poised to replace fossil fuels, with its usage on the rise. Despite its high energy content per unit mass, hydrogen faces limitations in storage and transportation due to its low storage density and challenges in long-term storage. In contrast, ammonia offers a high storage capacity per unit volume and is relatively easy to liquefy, making it an attractive option for storing and transporting large volumes of hydrogen. While NH3 decomposition is an endothermic reaction, achieving excellent low-temperature catalytic activity is essential for process efficiency and cost-effectiveness. The study examined the effects of different zeolite types (5A, NaY, ZSM5) on NH3 decomposition activity, considering differences in pore structure, cations, and Si/Al-ratio. Notably, the 5A zeolite facilitated the high dispersion of Ni across the surface, inside pores, and within the structure. Its low Si/Al ratio contributed to abundant acidity, enhancing ammonia adsorption. Additionally, the presence of Na and Ca cations in the support created medium basic sites that improved N2 desorption rates. As a result, among the prepared catalysts, the 15 wt%Ni/5A catalyst exhibited the highest NH3 conversion and a high H2 formation rate of 23.5 mmol/gcat·min (30,000 mL/gcat·h, 600 ℃). This performance was attributed to the strong metal-support interaction and the enhancement of N2 desorption rates through the presence of medium basic sites.

수소는 화석연료를 대체할 수 있는 COx-free 에너지원으로 사용량은 지속적으로 증가할 것이다. 수소는 단위 질량당 에너지 함량이 높으나, 낮은 저장 밀도와 장기 저장의 어려움으로 저장 및 운송에 한계가 존재한다. 반면, 암모니아는 단위 부피당 저장용량이 크고, 비교적 액화가 용이하여 대용량 수소를 저장 및 운송할 수 있는 수소 운반체로 주목받고 있다. 암모니아 분해를 통한 수소 생산 반응은 흡열반응으로 공정의 효율성 및 경제성을 위해 저온 활성이 우수한 촉매 개발이 요구된다. 본 연구에서는 활성금속 Ni의 고분산 담지를 위해 넓은 비표면적의 제올라이트를 지지체로 사용하였으며, 제올라이트 종류(5A, NaY, ZSM5)에 따른 특성(기공구조, 양이온, Si/Al-비)이 촉매 활성 및 반응 특성에 미치는 영향을 확인하였다. 5A 제올라이트는 표면, 기공, 구조체 내에 Ni 을 고분산 담지를 가능하게 하였으며, 낮은 Si/Al-비로 인한 풍부한 산점은 암모니아 흡착을 증가시켰다. 또한, 지지체에 포함된 Na과 Ca 양이온으로 인한 중간-염기점은 질소 탈착속도를 향상시켰다. 따라서, 15wt%Ni/5A 촉매는 강한 금속-지지체 상호작용과 중간-염기점을 통한 질소 탈착 속도 향상으로 가장 우수한 암모니아 전환율과 높은 수소 생성율 23.5 mmol/gcat·min (30,000 mL/gcat·h, 600 ℃)을 보였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구과제(No. 20213030040550)이며, 지원에 감사를 드립니다.

References

  1. Abdalla, A.M., "Hydrogen production, storage, transportation and key challenge with applications :A review" Energy conversion and management, 165, 602-627, (2018) https://doi.org/10.1016/j.enconman.2018.03.088
  2. Niaz. S., "Hydrogen storage:Material, methos and perspectives" Renewable and sustainable Energy Review, 50, 457-469, (2015) https://doi.org/10.1016/j.rser.2015.05.011
  3. A. Valera-Medina, "Ammonia for power" Progress in Energy and Combustion Science, 69, 63-102, (2018) https://doi.org/10.1016/j.pecs.2018.07.001
  4. T.E. Bell, "H2 Production via Ammonia Decomposition Using Non-Noble Metal Catalysts: A Review", Topics in Catalysis, 59, 1438-1457, (2016) https://doi.org/10.1007/s11244-016-0653-4
  5. Gu. Y., "Role of metal oxide supports in NH3 decomposition over Ni catalysts" Applied Catalysis A:General, 524, 45-49, (2016) https://doi.org/10.1016/j.apcata.2016.05.020
  6. YaO. L., "Core-Shell structured nanoparticles (M@SiO2, Al2O3, MgO; M=Fe, Co, Ni, Ru) and their application in COx-free H2 production via NH3 decomposition" Catalysis Today, 158, 401-408, (2010) https://doi.org/10.1016/j.cattod.2010.05.009
  7. Gu, Y., "One-pot synthesis of supported Ni@Al2O3 catalysts with uniform small-sized Ni for hydrogen generation via ammonia decomposition." International Journal of Hydrogen Energy, 46(5), 4045-4054, (2021) https://doi.org/10.1016/j.ijhydene.2020.11.003
  8. Kocer, T.,"Effect of Nickel Precursor on the Catalytic Performance of Graphene Aerogel-Supported Nickel Nanoparticles for the Production of COx free Hydrogen by Ammonia Decomposition." Energy Technology, 10(3) 2100794, (2022)
  9. Inokawa, H., "Synthesis of nickel nanoparticles with excellent thermal stability in micropores of zeolite" International Journal of hydrogen energy, 38(31), 13579-13586, (2013) https://doi.org/10.1016/j.ijhydene.2013.08.027
  10. Liu. H., "Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing COx-free hydrogen from ammonia". Applied Catalysis A:General, 337(2), 138-147, (2008) https://doi.org/10.1016/j.apcata.2007.12.006
  11. Wei. L., "Influence of nickel precursors on the properties and performance of Ni impregnated zeolite 5A and 13X catalysts in CO2 methanation". Catalysis Today, 362, 35-46, (2021) https://doi.org/10.1016/j.cattod.2020.05.025
  12. Garaca, I., "CO2 hydrogenation over Ni-Based Zeolites: Effect of Catlaysts Prepraration and Prereduction Conditions on Methnation Performance" Topics in Catalysis, 59(2-4), 101-110, (2014)
  13. Im. Y., "Ammonia decomposition over nickel catalysts supported on alkaline earth metal aluminate for H2 production" International Journal of Hydrogen Energy, 45(51), 26979-26988, (2020) https://doi.org/10.1016/j.ijhydene.2020.07.014
  14. Hu. Z., "Fe/ZSM-5 catalysts for ammonia decomposition to COx-free hydrogen:effect of SiO2/Al2O3 ratio" Molecular Catlaysis, 455, 14-22, (2018) https://doi.org/10.1016/j.mcat.2018.05.027
  15. Sato, K., "Supported Ni catlaysts prepared from hydrotalcite-like compounds for the production of hydrogen by ammonia decomposition" International Journal of Hydrogen Energy, 42(10), 6610-6617, (2017) https://doi.org/10.1016/j.ijhydene.2016.11.150
  16. Okura, K. "Ammonia decomposition over nickel catalysts supported on rare-earth oxides for the on site generation of hydrogen." ChemCatChem, 8(18), 2988-2995, (2016) https://doi.org/10.1002/cctc.201600610
  17. K. Kim., "Effect of Support on the Catalytic Activity of Ru-based Catalysts Prepared by Polyol Method in NH3 Decomposition Reaction", Journal of energy & Climate, 18, 037-049, (2023)
  18. Han. X., "Promoting effects of iridium on nickel based catalysts in ammonia decomposition" Journal of Fuel Chemistry and Technology, 35(6), 691-695, (2007) https://doi.org/10.1016/S1872-5813(08)60004-3
  19. Su, Q., Gu, L., Yao, Y., Zhao, J., Ji, W., Ding, W., & Au, C. T. . "Layered double hydroxides derived Nix (MgyAlzOn) catalysts: Enhanced ammonia decomposition by hydrogen spillover effect." Applied Catalysis B: Environmental, 201, 451-460, (2017) https://doi.org/10.1016/j.apcatb.2016.08.051