Acknowledgement
We appreciate the anonymous reviewers insightful comments, which improved the readability of the papers presentation.
References
- E. W. Barnes, The theory of the double gamma function, Philos. Trans. Roy. Soc.(A), 196(1901), 265-387. https://doi.org/10.1098/rsta.1901.0006
- E. W. Barnes, On the theory of the double gamma function, Trans. Cambridge Phil. Soc., 19(1904), 374-425.
- C. Berge, Principles of combinatorics, Academic Press(1971).
- Maged G. Bin-Saad, Sums and partial sums of double power series associated with the generalized zeta function and their N-fractional calculus, Math. J. Okayama University, 49(2007), 37-52.
- Maged G. Bin-Saad, Hypergeometric series associated with the Hurwitz-Lerch zeta function, Acta Math. Univ. Comenian, 78(2009), 269-286.
- M. A. Chaudhry and S. M. Zubair, Generalized incomplete gamma function with applications. J. Comput. Appl. Math., 55(1994), 99-124. https://doi.org/10.1016/0377-0427(94)90187-2
- M. A. Chaudhry, A. Qadir, M. Raque and S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math., 78(1997), 19-32. https://doi.org/10.1016/S0377-0427(96)00102-1
- M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159(2004), 589-602. https://doi.org/10.1016/j.amc.2003.09.017
- M. A. Chaudhry and S. M. Zubair, On a class of incomplete gamma functions with applications, CRC Press (Chapman and Hall), Boca Raton(2002).
- A. Erdelyi, W. Magnus and F. Oberhettinger, Higher Transcendental Functions, Vol. I, McGraw-Hill, New York(1953).
- O. Espinosa and V. H. Moll, On some integrals involving the Hurwitz zeta function: Part 2, The Ramanujan J., 6(2002), 159-188. https://doi.org/10.1023/A:1015706300169
- O. Espinosa and V. H. Moll, A generalized poly gamma function, Integral Transforms Spec. Funct., 15(2)(2004), 101-115. https://doi.org/10.1080/10652460310001600573
- H. Exton, Multiple hypergeometric functions and applications, Halsted Press, London(1976).
- M. Garg, K. Jain and S. L. Kalla, A further study of general Hurwitz-Lerch zeta function, Algebras Groups Geom., 25(2008), 311-319.
- S. Goyal and R. K. Laddha, On the generalized Riemann zeta function and the generalized Lambert transform, Ganita Sandesh, 11(1997), 99-108.
- S. Kanemitsu, M. Katsurada and M. Yoshimoto, On the Hurwitz-Lerch zeta function. Aequationes Math., 59(2000), 1-19. https://doi.org/10.1007/PL00000117
- M. Katsurada, An application of Mellin-Barnes type integrals to the mean square of Lerch zeta-function, Collect. Math., 48(1997), 137-153.
- D. Klusch, On the Taylor expansion of Lerch zeta-function, J. Math. Anal. Appl., 170(1992), 513-523. https://doi.org/10.1016/0022-247X(92)90034-B
- V. Kumar, On the generalized hurwitz-lerch zeta function and generalized lambert transform, J. Class. Anal., 17(1)(2021), 55-67. https://doi.org/10.7153/jca-2021-17-05
- C. A. Larry, Special functions of mathematics for engineers, SPIE Press and Oxford University Press, New York(1998).
- K. Matsumoto, On the analytic continuation of various multiple zeta-functions, Number theory for the millennium, II (Urbana, IL, 2000), 417-440. https://doi.org/10.1201/9780138747060-21
- K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, New York(1993).
- M. A. Ozaraslan, Some remarks on extended hypergeometric, extended confluent hypergeometric and extended Appell's functions, J. Comput. Anal. Appl., 14(6)(2012), 1148-1153.
- A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series, Volume 3, More special functions, Gordon and Breach Science Publishers, New York(1990).
- R. K. Parmar and R. K. Raina, On a certain extension of the Hurwitz-Lerch zeta functionm, An. Univ. Vest Timis. Ser. Mat.-Inform., 52(2)(2014), 157-170. https://doi.org/10.2478/awutm-2014-0017
- S. Ramanujan, A series for Euler's constant γ, Messenger Math., 46(1916-17), 73-80.
- R. K. Raina and P. K. Chhajed, Certain results involving a class of functions associated with the Hurwitz zeta function, Acta. Math. Univ. Comenianae, 1(2004), 89-100.
- L. J. Slater, Confluent hypergeometric functions, Cambridge Univ., Press(1960).
- H. M. Srivastava and P. K. Karlsson, Multiple Gaussian Hypergeometric Series. Halsted Press, Brimstone, London, New York(1985).
- E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed. Cambridge Univ. Press(1927).