Acknowledgement
We thank the authors of [1] for early copies of their manuscript, and Pavol Hell in particular for generously directing us towards key ideas on several occasions. We thank an anonymous reviewer for a very detailed reading which revealed essential mistakes in an earlier version of the paper.
References
- J. Bok, R. Brewster, T. Feder, P. Hell and N. Jedlickova, List homomorphism problems for signed trees, Discrete Math., 346(3)(2023), 113257. DOI:10.1016/j.disc.2022.113257.
- J. Bok, R. Brewster, P. Hell, N. Jedlickova and A. Rafiey, Min orderings and list homomorphism dichotomies for signed and unsigned graphs, arXiv (2022). DOI:10.48550/arXiv.2206.01068.
- R. Brewster, F. Foucaud, P. Hell and R. Naserasr, The complexity of signed graph and edge-coloured graph homomorphisms, Discrete Math., 340(2)(2017), 223-235. https://doi.org/10.1016/j.disc.2016.08.005
- R. Brewster and M. Siggers, A complexity dichotomy for signed H-colouring. Discrete Math., 341(2018), 2768-2773. DOI:10.1016/j.disc.2018.06.026.
- A. Bulatov, Complexity of conservative constraint satisfaction problems, ACM Trans. Comput. Log., 12(4)(2011), Art. 24, 66. DOI:10.1109/FOCS.2017.37.
- A. Bulatov, A dichotomy theorem for nonuniform CSPs, In 58th Annual IEEE Symposium on Foundations of Computer Science-FOCS 2017, 319-330. IEEE Computer Soc., Los Alamitos, CA (2017). DOI:10.1109/FOCS.2017.37.
- T. Feder and P. Hell, List homomorphisms to reflexive graphs, J. Combin. Theory Ser. B, 72(2)(1998), 236-250. DOI:10.1006/jctb.1997.1812.
- T. Feder, P. Hell and J. Huang, Bi-arc graphs and the complexity of list homomorphisms, J. of Graph Theory, 42(1)(2003), 61-80. DOI:10.1002/jgt.10073.
- T. Feder and M. Vardi, The computational structure of monotone monadic SNP and constraint satisfaction: a study through Datalog and group theory, SIAM J. Comput., 28(1)(1999), 57-104. DOI:10.1137/S0097539794266766.
- F. Foucaud and R. Naserasr, The complexity of homomorphisms of signed graphs and signed constraint satisfaction, LNCS, 79(8392)(2014), 526-537. https://doi.org/10.1007/978-3-642-54423-1_46
- F. Harary, On the notion of balance of a signed graph, Michigan Mathematical Journal, 2(2)(1953), 143-146. DOI:10.1307/mmj/1028989917.
- P. Hell, J. Huang, R. McConnel and A. Rafiey, Interval-like graphs and digraphs, 43rd International Symposium on Mathematical Foundations of Computer Science, 68(MFCS 2018), 1-13. DOI:10.4230/LIPIcs.MFCS.2018.68.
- P. Hell and J. Nesetril, On the complexity of H-coloring, J. Combin. Theory Ser. B, 48(1)(1990), 92-110. DOI:10.1016/0095-8956(90)90132-J.
- P. Hell and A. Rafiey, The dichotomy of list homomorphisms for digraphs (2010).
- R. Naserasr, E. Rollova and E. Sopena, Homomorphisms of signed graphs, J. Graph Theory, 79(3)(2015), 178-212. DOI:10.1002/jgt.21817.
- T. Zaslavsky, Signed graphs, Discrete Applied Mathematics, 4(1)(1982), 47-74. DOI:10.1016/0166-218X(82)90033-6.
- D. Zhuk, A proof of the CSP dichotomy conjecture, J. ACM, 67(5)(2020), Art. 30, 78. DOI:10.1145/3402029.