DOI QR코드

DOI QR Code

Towards A Dichotomy for the List Switch Homomorphism Problem for Signed Graphs

  • Hyobeen Kim (Kyungpook National University Mathematics Department) ;
  • Mark Siggers (Kyungpook National University Mathematics Department)
  • Received : 2023.02.05
  • Accepted : 2023.07.31
  • Published : 2023.09.30

Abstract

We make advances towards a structural characterisation of the signed graphs H for which the list switch H-colouring problem List-S-Hom(H) can be solved in polynomial time. We conjecture two different characterisations, the second refining the first, in the case that the graph H can be switched to a graph in which every negative edge is also positive. Using a recent proof of the first characterisations for reflexive signed graphs, by Bok et. al., we prove the second characterisation for reflexive signed graphs. We also provide several tools for reducing the problem to the bipartite case, and prove a full complexity dichotomy for a related problem.

Keywords

Acknowledgement

We thank the authors of [1] for early copies of their manuscript, and Pavol Hell in particular for generously directing us towards key ideas on several occasions. We thank an anonymous reviewer for a very detailed reading which revealed essential mistakes in an earlier version of the paper.

References

  1. J. Bok, R. Brewster, T. Feder, P. Hell and N. Jedlickova, List homomorphism problems for signed trees, Discrete Math., 346(3)(2023), 113257. DOI:10.1016/j.disc.2022.113257.
  2. J. Bok, R. Brewster, P. Hell, N. Jedlickova and A. Rafiey, Min orderings and list homomorphism dichotomies for signed and unsigned graphs, arXiv (2022). DOI:10.48550/arXiv.2206.01068.
  3. R. Brewster, F. Foucaud, P. Hell and R. Naserasr, The complexity of signed graph and edge-coloured graph homomorphisms, Discrete Math., 340(2)(2017), 223-235. https://doi.org/10.1016/j.disc.2016.08.005
  4. R. Brewster and M. Siggers, A complexity dichotomy for signed H-colouring. Discrete Math., 341(2018), 2768-2773. DOI:10.1016/j.disc.2018.06.026.
  5. A. Bulatov, Complexity of conservative constraint satisfaction problems, ACM Trans. Comput. Log., 12(4)(2011), Art. 24, 66. DOI:10.1109/FOCS.2017.37.
  6. A. Bulatov, A dichotomy theorem for nonuniform CSPs, In 58th Annual IEEE Symposium on Foundations of Computer Science-FOCS 2017, 319-330. IEEE Computer Soc., Los Alamitos, CA (2017). DOI:10.1109/FOCS.2017.37.
  7. T. Feder and P. Hell, List homomorphisms to reflexive graphs, J. Combin. Theory Ser. B, 72(2)(1998), 236-250. DOI:10.1006/jctb.1997.1812.
  8. T. Feder, P. Hell and J. Huang, Bi-arc graphs and the complexity of list homomorphisms, J. of Graph Theory, 42(1)(2003), 61-80. DOI:10.1002/jgt.10073.
  9. T. Feder and M. Vardi, The computational structure of monotone monadic SNP and constraint satisfaction: a study through Datalog and group theory, SIAM J. Comput., 28(1)(1999), 57-104. DOI:10.1137/S0097539794266766.
  10. F. Foucaud and R. Naserasr, The complexity of homomorphisms of signed graphs and signed constraint satisfaction, LNCS, 79(8392)(2014), 526-537. https://doi.org/10.1007/978-3-642-54423-1_46
  11. F. Harary, On the notion of balance of a signed graph, Michigan Mathematical Journal, 2(2)(1953), 143-146. DOI:10.1307/mmj/1028989917.
  12. P. Hell, J. Huang, R. McConnel and A. Rafiey, Interval-like graphs and digraphs, 43rd International Symposium on Mathematical Foundations of Computer Science, 68(MFCS 2018), 1-13. DOI:10.4230/LIPIcs.MFCS.2018.68.
  13. P. Hell and J. Nesetril, On the complexity of H-coloring, J. Combin. Theory Ser. B, 48(1)(1990), 92-110. DOI:10.1016/0095-8956(90)90132-J.
  14. P. Hell and A. Rafiey, The dichotomy of list homomorphisms for digraphs (2010).
  15. R. Naserasr, E. Rollova and E. Sopena, Homomorphisms of signed graphs, J. Graph Theory, 79(3)(2015), 178-212. DOI:10.1002/jgt.21817.
  16. T. Zaslavsky, Signed graphs, Discrete Applied Mathematics, 4(1)(1982), 47-74. DOI:10.1016/0166-218X(82)90033-6.
  17. D. Zhuk, A proof of the CSP dichotomy conjecture, J. ACM, 67(5)(2020), Art. 30, 78. DOI:10.1145/3402029.