과제정보
S.-C.B. is supported by a Creative Research Grant (NRF-2014R1A3A2030690) through the National Research Foundation (NRF) of Korea. J.-W.L. is supported by Basic Science Research Program grant (NRF-2021R1I1A1A01060610) of Korea. M.-K.K. is supported by Basic Science Research Program grant (NRF-2017R1A6A3A11028050) of Korea. S.-H.S. is supported by Basic Science Research Program grant (NRF-2021R1I1A1A01059185). E.-G.K. is supported by Medical Research Center (MRC-2020R1A5A2017476) of Korea. D.-S. L. is supported by the National Creative Research Initiatives (NRF-2020-2079551) of Korea.
참고문헌
- Blagosklonny, M.V. and Pardee, A.B. (2002). The restriction point of the cell cycle. Cell Cycle 1, 103-110. https://doi.org/10.4161/cc.1.2.108
- Bracken, A.P., Pasini, D., Capra, M., Prosperini, E., Colli, E., and Helin, K. (2003). EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22, 5323-5335. https://doi.org/10.1093/emboj/cdg542
- Bushnell, B. (2014). BBMap. Retrieved August 19, 2021, from https://sourceforge.net/projects/bbmap/
- Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R.S., and Zhang, Y. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039-1043. https://doi.org/10.1126/science.1076997
- Chang, L., Azzolin, L., Di Biagio, D., Zanconato, F., Battilana, G., Lucon Xiccato, R., Aragona, M., Giulitti, S., Panciera, T., Gandin, A., et al. (2018). The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature 563, 265-269. https://doi.org/10.1038/s41586-018-0658-1
- Cheung, P.C., Campbell, D.G., Nebreda, A.R., and Cohen, P. (2003). Feedback control of the protein kinase TAK1 by SAPK2a/p38alpha. EMBO J. 22, 5793-5805. https://doi.org/10.1093/emboj/cdg552
- Chi, X.Z., Lee, J.W., Lee, Y.S., Park, I.Y., Ito, Y., and Bae, S.C. (2017). Runx3 plays a critical role in restriction-point and defense against cellular transformation. Oncogene 36, 6884-6894. https://doi.org/10.1038/onc.2017.290
- Chi, X.Z., Yang, J.O., Lee, K.Y., Ito, K., Sakakura, C., Li, Q.L., Kim, H.R., Cha, E.J., Lee, Y.H., Kaneda, A., et al. (2005). RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation with transforming growth factor {beta}-activated SMAD. Mol. Cell. Biol. 25, 8097-8107. https://doi.org/10.1128/MCB.25.18.8097-8107.2005
- Cottini, F., Hideshima, T., Xu, C., Sattler, M., Dori, M., Agnelli, L., ten Hacken, E., Bertilaccio, M.T., Antonini, E., Neri, A., et al. (2014). Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nat. Med. 20, 599-606. https://doi.org/10.1038/nm.3562
- Deng, Y., Lu, J., Li, W., Wu, A., Zhang, X., Tong, W., Ho, K.K., Qin, L., Song, H., and Mak, K.K. (2018). Reciprocal inhibition of YAP/TAZ and NF-kappaB regulates osteoarthritic cartilage degradation. Nat. Commun. 9, 4564.
- Denissova, N.G., Pouponnot, C., Long, J., He, D., and Liu, F. (2000). Transforming growth factor beta -inducible independent binding of SMAD to the Smad7 promoter. Proc. Natl. Acad. Sci. U. S. A. 97, 6397-6402. https://doi.org/10.1073/pnas.090099297
- Dong, J., Feldmann, G., Huang, J., Wu, S., Zhang, N., Comerford, S.A., Gayyed, M.F., Anders, R.A., Maitra, A., and Pan, D. (2007). Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120-1133. https://doi.org/10.1016/j.cell.2007.07.019
- Fan, R., Kim, N.G., and Gumbiner, B.M. (2013). Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc. Natl. Acad. Sci. U. S. A. 110, 2569-2574. https://doi.org/10.1073/pnas.1216462110
- Fujii, M., Toyoda, T., Nakanishi, H., Yatabe, Y., Sato, A., Matsudaira, Y., Ito, H., Murakami, H., Kondo, Y., Kondo, E., et al. (2012). TGF-beta synergizes with defects in the Hippo pathway to stimulate human malignant mesothelioma growth. J. Exp. Med. 209, 479-494. https://doi.org/10.1084/jem.20111653
- Goodman, R.H. and Smolik, S. (2000). CBP/p300 in cell growth, transformation, and development. Genes Dev. 14, 1553-1577. https://doi.org/10.1101/gad.14.13.1553
- Hannon Lab. (2014). FASTX toolkit. Retrieved August 19, 2021, from http://hannonlab.cshl.edu/fastx_toolkit/
- Hansen, C.G., Moroishi, T., and Guan, K.L. (2015). YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol. 25, 499-513. https://doi.org/10.1016/j.tcb.2015.05.002
- Ikushima, H. and Miyazono, K. (2010). TGFbeta signalling: a complex web in cancer progression. Nat. Rev. Cancer 10, 415-424. https://doi.org/10.1038/nrc2853
- Ishida, W., Hamamoto, T., Kusanagi, K., Yagi, K., Kawabata, M., Takehara, K., Sampath, T.K., Kato, M., and Miyazono, K. (2000). Smad6 is a Smad1/5-induced smad inhibitor. Characterization of bone morphogenetic protein-responsive element in the mouse Smad6 promoter. J. Biol. Chem. 275, 6075-6079. https://doi.org/10.1074/jbc.275.9.6075
- Ito, Y., Bae, S.C., and Chuang, L.S. (2015). The RUNX family: developmental regulators in cancer. Nat. Rev. Cancer 15, 81-95. https://doi.org/10.1038/nrc3877
- Ito, Y. and Miyazono, K. (2003). RUNX transcription factors as key targets of TGF-beta superfamily signaling. Curr. Opin. Genet. Dev. 13, 43-47. https://doi.org/10.1016/S0959-437X(03)00007-8
- Jang, J.W., Kim, M.K., Lee, Y.S., Lee, J.W., Kim, D.M., Song, S.H., Lee, J.Y., Choi, B.Y., Min, B., Chi, X.Z., et al. (2017). RAC-LATS1/2 signaling regulates YAP activity by switching between the YAP-binding partners TEAD4 and RUNX3. Oncogene 36, 999-1011. https://doi.org/10.1038/onc.2016.266
- Jozwik, K.M. and Carroll, J.S. (2012). Pioneer factors in hormone-dependent cancers. Nat. Rev. Cancer 12, 381-385. https://doi.org/10.1038/nrc3263
- Kadoch, C. and Crabtree, G.R. (2015). Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447.
- Kanai, F., Marignani, P.A., Sarbassova, D., Yagi, R., Hall, R.A., Donowitz, M., Hisaminato, A., Fujiwara, T., Ito, Y., Cantley, L.C., et al. (2000). TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J. 19, 6778-6791. https://doi.org/10.1093/emboj/19.24.6778
- Kothapalli, D., Hayashi, N., and Grotendorst, G.R. (1998). Inhibition of TGF-beta-stimulated CTGF gene expression and anchorage-independent growth by cAMP identifies a CTGF-dependent restriction point in the cell cycle. FASEB J. 12, 1151-1161. https://doi.org/10.1096/fasebj.12.12.1151
- Labibi, B., Bashkurov, M., Wrana, J.L., and Attisano, L. (2020). Modeling the control of TGF-beta/Smad nuclear accumulation by the Hippo pathway effectors, Taz/Yap. iScience 23, 101416.
- Lee, J.W., Kim, D.M., Jang, J.W., Park, T.G., Song, S.H., Lee, Y.S., Chi, X.Z., Park, I.Y., Hyun, J.W., Ito, Y., et al. (2019a). RUNX3 regulates cell cycle-dependent chromatin dynamics by functioning as a pioneer factor of the restriction-point. Nat. Commun. 10, 1897.
- Lee, J.W., Lee, Y.S., Kim, M.K., Chi, X.Z., Kim, D., and Bae, S.C. (2023). Role of RUNX3 in restriction point regulation. Cells 12, 708.
- Lee, J.W., Park, T.G., and Bae, S.C. (2019b). Involvement of RUNX3 and BRD family members in restriction point. Mol. Cells 42, 836-839.
- Lee, Y.S., Lee, J.W., Jang, J.W., Chi, X.Z., Kim, J.H., Li, Y.H., Kim, M.K., Kim, D.M., Choi, B.S., Kim, E.G., et al. (2013). Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell 24, 603-616. https://doi.org/10.1016/j.ccr.2013.10.003
- Lee, Y.S., Lee, J.W., Somg, S.H., Kim, D.M., Lee, J.W., Chi, X.Z., Ito, Y., and Bae, S.C. (2020). K-Ras-activated cells can develop into lung tumors when Runx3-mediated tumor suppressor pathways are abrogated. Mol. Cells 43, 889-897.
- Li, Q.L., Ito, K., Sakakura, C., Fukamachi, H., Inoue, K., Chi, X.Z., Lee, K.Y., Nomura, S., Lee, C.W., Han, S.B., et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109, 113-124. https://doi.org/10.1016/S0092-8674(02)00690-6
- Liu, X., Li, H., Rajurkar, M., Li, Q., Cotton, J.L., Ou, J., Zhu, L.J., Goel, H.L., Mercurio, A.M., Park, J.S., et al. (2016). Tead and AP1 coordinate transcription and motility. Cell Rep. 14, 1169-1180. https://doi.org/10.1016/j.celrep.2015.12.104
- Liu-Chittenden, Y., Huang, B., Shim, J.S., Chen, Q., Lee, S.J., Anders, R.A., Liu, J.O., and Pan, D. (2012). Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 26, 1300-1305. https://doi.org/10.1101/gad.192856.112
- Malumbres, M. and Barbacid, M. (2001). To cycle or not to cycle: a critical decision in cancer. Nat. Rev. Cancer 1, 222-231. https://doi.org/10.1038/35106065
- Massague, J. (2008). TGFbeta in cancer. Cell 134, 215-230. https://doi.org/10.1016/j.cell.2008.07.001
- Miller, D.S.J., Schmierer, B., and Hill, C.S. (2019). TGF-beta family ligands exhibit distinct signalling dynamics that are driven by receptor localisation. J. Cell Sci. 132, jcs234039.
- Miller, E., Yang, J., DeRan, M., Wu, C., Su, A.I., Bonamy, G.M., Liu, J., Peters, E.C., and Wu, X. (2012). Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP. Chem. Biol. 19, 955-962. https://doi.org/10.1016/j.chembiol.2012.07.005
- Nagarajan, R.P., Zhang, J., Li, W., and Chen, Y. (1999). Regulation of Smad7 promoter by direct association with Smad3 and Smad4. J. Biol. Chem. 274, 33412-33418. https://doi.org/10.1074/jbc.274.47.33412
- Nakamura, R., Hiwatashi, N., Bing, R., Doyle, C.P., and Branski, R.C. (2021). Concurrent YAP/TAZ and SMAD signaling mediate vocal fold fibrosis. Sci. Rep. 11, 13484.
- Nakao, A., Imamura, T., Souchelnytskyi, S., Kawabata, M., Ishisaki, A., Oeda, E., Tamaki, K., Hanai, J., Heldin, C.H., Miyazono, K., et al. (1997). TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 16, 5353-5362. https://doi.org/10.1093/emboj/16.17.5353
- Onodera, Y., Teramura, T., Takehara, T., and Fukuda, K. (2019). Transforming growth factor beta-activated kinase 1 regulates mesenchymal stem cell proliferation through stabilization of Yap1/Taz proteins. Stem Cells 37, 1595-1605. https://doi.org/10.1002/stem.3083
- Pan, D. (2010). The hippo signaling pathway in development and cancer. Dev. Cell 19, 491-505. https://doi.org/10.1016/j.devcel.2010.09.011
- Pardee, A.B. (1974). A restriction point for control of normal animal cell proliferation. Proc. Natl. Acad. Sci. U. S. A. 71, 1286-1290. https://doi.org/10.1073/pnas.71.4.1286
- Pearson, J.D., Huang, K., Pacal, M., McCurdy, S.R., Lu, S., Aubry, A., Yu, T., Wadosky, K.M., Zhang, L., Wang, T., et al. (2021). Binary pan-cancer classes with distinct vulnerabilities defined by pro- or anti-cancer YAP/TEAD activity. Cancer Cell 39, 1115-1134.e12. https://doi.org/10.1016/j.ccell.2021.06.016
- Qiao, Y., Lin, S.J., Chen, Y., Voon, D.C., Zhu, F., Chuang, L.S., Wang, T., Tan, P., Lee, S.C., Yeoh, K.G., et al. (2016). RUNX3 is a novel negative regulator of oncogenic TEAD-YAP complex in gastric cancer. Oncogene 35, 2664-2674. https://doi.org/10.1038/onc.2015.338
- R Core Team (2020). R: A Language and Environment for Statistical Computing (Vienna, Austria: R Foundation for Statistical Computing).
- Reddy, B.V. and Irvine, K.D. (2013). Regulation of Hippo signaling by EGFRMAPK signaling through Ajuba family proteins. Dev. Cell 24, 459-471. https://doi.org/10.1016/j.devcel.2013.01.020
- Ren, F., Zhang, L., and Jiang, J. (2010). Hippo signaling regulates Yorkie nuclear localization and activity through 14-3-3 dependent and independent mechanisms. Dev. Biol. 337, 303-312. https://doi.org/10.1016/j.ydbio.2009.10.046
- Roberts, A., Trapnell, C., Donaghey, J., Rinn, J.L., and Pachter, L. (2011). Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 12, R22.
- Santoro, R., Zanotto, M., Simionato, F., Zecchetto, C., Merz, V., Cavallini, C., Piro, G., Sabbadini, F., Boschi, F., Scarpa, A., et al. (2020). Modulating TAK1 expression inhibits YAP and TAZ oncogenic functions in pancreatic cancer. Mol. Cancer Ther. 19, 247-257. https://doi.org/10.1158/1535-7163.MCT-19-0270
- Schlegelmilch, K., Mohseni, M., Kirak, O., Pruszak, J., Rodriguez, J.R., Zhou, D., Kreger, B.T., Vasioukhin, V., Avruch, J., Brummelkamp, T.R., et al. (2011). Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 144, 782-795. https://doi.org/10.1016/j.cell.2011.02.031
- Shi, Y. and Massague, J. (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685-700. https://doi.org/10.1016/S0092-8674(03)00432-X
- Simon, A. (2010). FastQC. Retrieved August 19, 2021, from https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
- Sudol, M., Bork, P., Einbond, A., Kastury, K., Druck, T., Negrini, M., Huebner, K., and Lehman, D. (1995). Characterization of the mammalian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain. J. Biol. Chem. 270, 14733-14741. https://doi.org/10.1074/jbc.270.24.14733
- Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105-1111. https://doi.org/10.1093/bioinformatics/btp120
- Varelas, X. (2014). The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 141, 1614-1626. https://doi.org/10.1242/dev.102376
- Varelas, X., Miller, B.W., Sopko, R., Song, S., Gregorieff, A., Fellouse, F.A., Sakuma, R., Pawson, T., Hunziker, W., McNeill, H., et al. (2010). The Hippo pathway regulates Wnt/beta-catenin signaling. Dev. Cell 18, 579-591. https://doi.org/10.1016/j.devcel.2010.03.007
- Varelas, X., Sakuma, R., Samavarchi-Tehrani, P., Peerani, R., Rao, B.M., Dembowy, J., Yaffe, M.B., Zandstra, P.W., and Wrana, J.L. (2008). TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat. Cell Biol. 10, 837-848. https://doi.org/10.1038/ncb1748
- Wang, H., Wang, L., Erdjument-Bromage, H., Vidal, M., Tempst, P., Jones, R.S., and Zhang, Y. (2004). Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873-878. https://doi.org/10.1038/nature02985
- Weinberg, R.A. (2007). pRb and control of the cell cycle clock. In The Biology of Cancer, R.A. Weinberg, ed. (New York: Garland Sciences), pp. 275-329.
- Yagi, R., Chen, L.F., Shigesada, K., Murakami, Y., and Ito, Y. (1999). A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J. 18, 2551-2562. https://doi.org/10.1093/emboj/18.9.2551
- Yin, F., Yu, J., Zheng, Y., Chen, Q., Zhang, N., and Pan, D. (2013). Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell 154, 1342-1355. https://doi.org/10.1016/j.cell.2013.08.025
- Yu, F.X., Zhao, B., Panupinthu, N., Jewell, J.L., Lian, I., Wang, L.H., Zhao, J., Yuan, H., Tumaneng, K., Li, H., et al. (2012). Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780-791. https://doi.org/10.1016/j.cell.2012.06.037
- Zanconato, F., Cordenonsi, M., and Piccolo, S. (2016). YAP/TAZ at the roots of cancer. Cancer Cell 29, 783-803. https://doi.org/10.1016/j.ccell.2016.05.005
- Zanconato, F., Forcato, M., Battilana, G., Azzolin, L., Quaranta, E., Bodega, B., Rosato, A., Bicciato, S., Cordenonsi, M., and Piccolo, S. (2015). Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol. 17, 1218-1227. https://doi.org/10.1038/ncb3216
- Zhang, H., Pasolli, H.A., and Fuchs, E. (2011). Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc. Natl. Acad. Sci. U. S. A. 108, 2270-2275. https://doi.org/10.1073/pnas.1019603108
- Zhang, X., Milton, C.C., Humbert, P.O., and Harvey, K.F. (2009). Transcriptional output of the Salvador/warts/hippo pathway is controlled in distinct fashions in Drosophila melanogaster and mammalian cell lines. Cancer Res. 69, 6033-6041. https://doi.org/10.1158/0008-5472.CAN-08-4592
- Zhang, Y., Feng, X.H., and Derynck, R. (1998). Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature 394, 909-913. https://doi.org/10.1038/29814
- Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747-2761. https://doi.org/10.1101/gad.1602907
- Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., Yu, J., Lin, J.D., Wang, C.Y., Chinnaiyan, A.M., et al. (2008). TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22, 1962-1971. https://doi.org/10.1101/gad.1664408