DOI QR코드

DOI QR Code

Sarcoma Immunotherapy: Confronting Present Hurdles and Unveiling Upcoming Opportunities

  • Sehan Jeong (Center for RNA Research, Institute for Basic Science) ;
  • Sharmin Afroz (Department of Occupational and Environmental Medicine, Ewha Womans University College of Medicine) ;
  • Donghyun Kang (Center for RNA Research, Institute for Basic Science) ;
  • Jeonghwan Noh (Center for RNA Research, Institute for Basic Science) ;
  • Jooyeon Suh (Center for RNA Research, Institute for Basic Science) ;
  • June Hyuk Kim (Orthopaedic Oncology Clinic, Center for Rare Cancer, Research Institute and Hospital, Graduate School of Cancer Science and Policy, National Cancer Center) ;
  • Hye Jin You (Cancer Microenvironment Branch, Division of Cancer Biology, Research Institute, National Cancer Center) ;
  • Hyun Guy Kang (Orthopaedic Oncology Clinic, Center for Rare Cancer, Research Institute and Hospital, Graduate School of Cancer Science and Policy, National Cancer Center) ;
  • Yi-Jun Kim (Department of Occupational and Environmental Medicine, Ewha Womans University College of Medicine) ;
  • Jin-Hong Kim (Center for RNA Research, Institute for Basic Science)
  • Received : 2023.05.15
  • Accepted : 2023.08.10
  • Published : 2023.10.31

Abstract

Sarcomas are rare and heterogeneous mesenchymal neoplasms originating from the bone or soft tissues, which pose significant treatment challenges. The current standard treatment for sarcomas consists of surgical resection, often combined with chemo- and radiotherapy; however, local recurrence and metastasis remain significant concerns. Although immunotherapy has demonstrated promise in improving long-term survival rates for certain cancers, sarcomas are generally considered to be relatively less immunogenic than other tumors, presenting substantial challenges for effective immunotherapy. In this review, we examine the possible opportunities for sarcoma immunotherapy, noting cancer testis antigens expressed in sarcomas. We then cover the current status of immunotherapies in sarcomas, including progress in cancer vaccines, immune checkpoint inhibitors, and adoptive cellular therapy and their potential in combating these tumors. Furthermore, we discuss the limitations of immunotherapies in sarcomas, including a low tumor mutation burden and immunosuppressive tumor microenvironment, and explore potential strategies to tackle the immunosuppressive barriers in therapeutic interventions, shedding light on the development of effective and personalized treatments for sarcomas. Overall, this review provides a comprehensive overview of the current status and potential of immunotherapies in sarcoma treatment, highlighting the challenges and opportunities for developing effective therapies to improve the outcomes of patients with these rare malignancies.

Keywords

Acknowledgement

This work was supported by grants from the National Research Foundation of Korea (NRF-2023R1A2C3003864 and RS-2023-00213119); Korea Drug Development Fund funded by Ministry of Science and ICT, Ministry of Trade, Industry, and Energy, and Ministry of Health and Welfare (RS-2023-00217266); the Institute for Basic Science from the Ministry of Science, ICT, and Future Planning of Korea (IBS-R008-D1); the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (HI21C1218); and Suh Kyungbae foundation (18010068).

References

  1. Abramson, J.S., Palomba, M.L., Gordon, L.I., Lunning, M.A., Wang, M., Arnason, J., Mehta, A., Purev, E., Maloney, D.G., Andreadis, C., et al. (2020). Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396, 839-852. https://doi.org/10.1016/S0140-6736(20)31366-0
  2. Ahmed, N., Brawley, V.S., Hegde, M., Robertson, C., Ghazi, A., Gerken, C., Liu, E., Dakhova, O., Ashoori, A., Corder, A., et al. (2015). Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 33, 1688-1696. https://doi.org/10.1200/JCO.2014.58.0225
  3. Ahmed, N., Salsman, V.S., Yvon, E., Louis, C.U., Perlaky, L., Wels, W.S., Dishop, M.K., Kleinerman, E.E., Pule, M., Rooney, C.M., et al. (2009). Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression. Mol. Ther. 17, 1779-1787. https://doi.org/10.1038/mt.2009.133
  4. Arce Vargas, F., Furness, A.J.S., Solomon, I., Joshi, K., Mekkaoui, L., Lesko, M.H., Miranda Rota, E., Dahan, R., Georgiou, A., Sledzinska, A., et al. (2017). Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity 46, 577-586. https://doi.org/10.1016/j.immuni.2017.03.013
  5. Ayodele, O. and Razak, A.R.A. (2020). Immunotherapy in soft-tissue sarcoma. Curr. Oncol. 27(Suppl 1), 17-23. https://doi.org/10.3747/co.27.5407
  6. Balachandran, V.P., Cavnar, M.J., Zeng, S., Bamboat, Z.M., Ocuin, L.M., Obaid, H., Sorenson, E.C., Popow, R., Ariyan, C., Rossi, F., et al. (2011). Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat. Med. 17, 1094-1100. https://doi.org/10.1038/nm.2438
  7. Beatty, G.L. and Gladney, W.L. (2015). Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 21, 687-692. https://doi.org/10.1158/1078-0432.CCR-14-1860
  8. Blasius, F., Delbruck, H., Hildebrand, F., and Hofmann, U.K. (2022). Surgical treatment of bone sarcoma. Cancers (Basel) 14, 2694.
  9. Cancer Genome Atlas Research Network (2017). Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell 171, 950-965.e28. https://doi.org/10.1016/j.cell.2017.10.014
  10. Charan, M., Dravid, P., Cam, M., Audino, A., Gross, A.C., Arnold, M.A., Roberts, R.D., Cripe, T.P., Pertsemlidis, A., Houghton, P.J., et al. (2020). GD2-directed CAR-T cells in combination with HGF-targeted neutralizing antibody (AMG102) prevent primary tumor growth and metastasis in Ewing sarcoma. Int. J. Cancer 146, 3184-3195. https://doi.org/10.1002/ijc.32743
  11. Chen, H.H., Zhang, T.N., Zhang, F.Y., and Zhang, T. (2022). Non-coding RNAs in drug and radiation resistance of bone and soft-tissue sarcoma: a systematic review. Elife 11, e79655.
  12. D'Angelo, S.P., Attia, S., Blay, J.Y., Strauss, S.J., Morales, C.M.V., Razak, A.R.A., Winkle, E.V., Annareddy, T., Sattigari, C., Diamantopoulos, E., et al. (2022). Identification of response stratification factors from pooled efficacy analyses of afamitresgene autoleucel ("Afami-cel" [Formerly ADP-A2M4]) in metastatic synovial sarcoma and myxoid/round cell liposarcoma phase 1 and phase 2 trials. J. Clin. Oncol. 40(16 Suppl), 11562.
  13. D'Angelo, S.P., Mahoney, M.R., Van Tine, B.A., Atkins, J., Milhem, M.M., Jahagirdar, B.N., Antonescu, C.R., Horvath, E., Tap, W.D., Schwartz, G.K., et al. (2018). Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol. 19, 416-426. https://doi.org/10.1016/S1470-2045(18)30006-8
  14. D'Angelo, S.P., Shoushtari, A.N., Agaram, N.P., Kuk, D., Qin, L.X., Carvajal, R.D., Dickson, M.A., Gounder, M., Keohan, M.L., Schwartz, G.K., et al. (2015). Prevalence of tumor-infiltrating lymphocytes and PD-L1 expression in the soft tissue sarcoma microenvironment. Hum. Pathol. 46, 357-365. https://doi.org/10.1016/j.humpath.2014.11.001
  15. de Jong, Y., Ingola, M., Briaire-de Bruijn, I.H., Kruisselbrink, A.B., Venneker, S., Palubeckaite, I., Heijs, B., Cleton-Jansen, A.M., Haas, R.L.M., and Bovee, J. (2019). Radiotherapy resistance in chondrosarcoma cells; a possible correlation with alterations in cell cycle related genes. Clin. Sarcoma Res. 9, 9.
  16. Demetri, G.D., Luke, J.J., Hollebecque, A., Powderly, J.D., 2nd, Spira, A.I., Subbiah, V., Naumovski, L., Chen, C., Fang, H., Lai, D.W., et al. (2021). First-in-human phase I study of ABBV-085, an antibody-drug conjugate targeting LRRC15, in sarcomas and other advanced solid tumors. Clin. Cancer Res. 27, 3556-3566. https://doi.org/10.1158/1078-0432.CCR-20-4513
  17. Devalaraja, S., To, T.K.J., Folkert, I.W., Natesan, R., Alam, M.Z., Li, M., Tada, Y., Budagyan, K., Dang, M.T., Zhai, L., et al. (2020). Tumor-derived retinoic acid regulates intratumoral monocyte differentiation to promote immune suppression. Cell 180, 1098-1114.e16. https://doi.org/10.1016/j.cell.2020.02.042
  18. Dhodapkar, M.V., Sznol, M., Zhao, B., Wang, D., Carvajal, R.D., Keohan, M.L., Chuang, E., Sanborn, R.E., Lutzky, J., Powderly, J., et al. (2014). Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci. Transl. Med. 6, 232ra51.
  19. Doig, K.D., Fellowes, A., Scott, P., and Fox, S.B. (2022). Tumour mutational burden: an overview for pathologists. Pathology 54, 249-253. https://doi.org/10.1016/j.pathol.2021.11.008
  20. Du, X.H., Wei, H., Zhang, P., Yao, W.T., and Cai, Q.Q. (2020). Heterogeneity of soft tissue sarcomas and its implications in targeted therapy. Front. Oncol. 10, 564852.
  21. Edwards, S.C., Hoevenaar, W.H.M., and Coffelt, S.B. (2021). Emerging immunotherapies for metastasis. Br. J. Cancer 124, 37-48. https://doi.org/10.1038/s41416-020-01160-5
  22. Epping, M.T., Wang, L., Edel, M.J., Carlee, L., Hernandez, M., and Bernards, R. (2005). The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell 122, 835-847. https://doi.org/10.1016/j.cell.2005.07.003
  23. Finkelstein, S.E., Fishman, M., Conley, A.P., Gabrilovich, D., Antonia, S., and Chiappori, A. (2012). Cellular immunotherapy for soft tissue sarcomas. Immunotherapy 4, 283-290. https://doi.org/10.2217/imt.12.3
  24. Gelderblom, H., Hogendoorn, P.C., Dijkstra, S.D., van Rijswijk, C.S., Krol, A.D., Taminiau, A.H., and Bovee, J.V. (2008). The clinical approach towards chondrosarcoma. Oncologist 13, 320-329. https://doi.org/10.1634/theoncologist.2007-0237
  25. Goodman, A.M., Kato, S., Bazhenova, L., Patel, S.P., Frampton, G.M., Miller, V., Stephens, P.J., Daniels, G.A., and Kurzrock, R. (2017). Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol. Cancer Ther. 16, 2598-2608. https://doi.org/10.1158/1535-7163.MCT-17-0386
  26. Goorin, A.M., Delorey, M.J., Lack, E.E., Gelber, R.D., Price, K., Cassady, J.R., Levey, R., Tapper, D., Jaffe, N., and Link, M. (1984). Prognostic significance of complete surgical resection of pulmonary metastases in patients with osteogenic sarcoma: analysis of 32 patients. J. Clin. Oncol. 2, 425-431. https://doi.org/10.1200/JCO.1984.2.5.425
  27. Gronchi, A. (2021). Surgery in soft tissue sarcoma: the thin line between a surgical or more conservative approach. Future Oncol. 17(21s), 3-6. https://doi.org/10.2217/fon-2021-0449
  28. Grunewald, T.G., Alonso, M., Avnet, S., Banito, A., Burdach, S., CidreAranaz, F., Di Pompo, G., Distel, M., Dorado-Garcia, H., Garcia-Castro, J., et al. (2020). Sarcoma treatment in the era of molecular medicine. EMBO Mol. Med. 12, e11131.
  29. Gubin, M.M., Zhang, X., Schuster, H., Caron, E., Ward, J.P., Noguchi, T., Ivanova, Y., Hundal, J., Arthur, C.D., Krebber, W.J., et al. (2014). Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577-581. https://doi.org/10.1038/nature13988
  30. Hashimoto, K., Nishimura, S., Ito, T., Oka, N., Kakinoki, R., and Akagi, M. (2022). Clinicopathological assessment of cancer/testis antigens NY‑ESO‑1 and MAGE‑A4 in osteosarcoma. Eur. J. Histochem. 66, 3377.
  31. Hemminger, J.A., Toland, A.E., Scharschmidt, T.J., Mayerson, J.L., Guttridge, D.C., and Iwenofu, O.H. (2014). Expression of cancer-testis antigens MAGEA1, MAGEA3, ACRBP, PRAME, SSX2, and CTAG2 in myxoid and round cell liposarcoma. Mod. Pathol. 27, 1238-1245. https://doi.org/10.1038/modpathol.2013.244
  32. Highfill, S.L., Cui, Y., Giles, A.J., Smith, J.P., Zhang, H., Morse, E., Kaplan, R.N., and Mackall, C.L. (2014). Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci. Transl. Med. 6, 237ra67.
  33. Hoefkens, F., Dehandschutter, C., Somville, J., Meijnders, P., and Van Gestel, D. (2016). Soft tissue sarcoma of the extremities: pending questions on surgery and radiotherapy. Radiat. Oncol. 11, 136.
  34. Holmgaard, R.B., Zamarin, D., Munn, D.H., Wolchok, J.D., and Allison, J.P. (2013). Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J. Exp. Med. 210, 1389-1402. https://doi.org/10.1084/jem.20130066
  35. Huang, X., Wang, L., Guo, H., Zhang, W., and Shao, Z. (2022). Single-cell transcriptomics reveals the regulative roles of cancer associated fibroblasts in tumor immune microenvironment of recurrent osteosarcoma. Theranostics 12, 5877-5887. https://doi.org/10.7150/thno.73714
  36. Hui, J.Y. (2016). Epidemiology and etiology of sarcomas. Surg. Clin. North Am. 96, 901-914. https://doi.org/10.1016/j.suc.2016.05.005
  37. Husain, M., Quiroga, D., Kim, H.G., Lenobel, S., Xu, M., Iwenofu, H., Chen, J.L., Verschraegen, C., Liebner, D., and Tinoco, G. (2023). Clinical markers of immunotherapy outcomes in advanced sarcoma. BMC Cancer 23, 326.
  38. Ingley, K.M., Maleddu, A., Grange, F.L., Gerrand, C., Bleyer, A., Yasmin, E., Whelan, J., and Strauss, S.J. (2022). Current approaches to management of bone sarcoma in adolescent and young adult patients. Pediatr. Blood Cancer 69, e29442.
  39. Iura, K., Kohashi, K., Ishii, T., Maekawa, A., Bekki, H., Otsuka, H., Yamada, Y., Yamamoto, H., Matsumoto, Y., Iwamoto, Y., et al. (2017). MAGEA4 expression in bone and soft tissue tumors: its utility as a target for immunotherapy and diagnostic marker combined with NY-ESO-1. Virchows Arch. 471, 383-392. https://doi.org/10.1007/s00428-017-2206-z
  40. June, C.H., O'Connor, R.S., Kawalekar, O.U., Ghassemi, S., and Milone, M.C. (2018). CAR T cell immunotherapy for human cancer. Science 359, 1361-1365. https://doi.org/10.1126/science.aar6711
  41. Jungbluth, A.A., Antonescu, C.R., Busam, K.J., Iversen, K., Kolb, D., Coplan, K., Chen, Y.T., Stockert, E., Ladanyi, M., and Old, L.J. (2001). Monophasic and biphasic synovial sarcomas abundantly express cancer/testis antigen NY-ESO-1 but not MAGE-A1 or CT7. Int. J. Cancer 94, 252-256. https://doi.org/10.1002/ijc.1451
  42. Juretic, A., Spagnoli, G.C., Schultz-Thater, E., and Sarcevic, B. (2003). Cancer/testis tumour-associated antigens: immunohistochemical detection with monoclonal antibodies. Lancet Oncol. 4, 104-109. https://doi.org/10.1016/S1470-2045(03)00982-3
  43. Kailayangiri, S., Altvater, B., Meltzer, J., Pscherer, S., Luecke, A., Dierkes, C., Titze, U., Leuchte, K., Landmeier, S., Hotfilder, M., et al. (2012). The ganglioside antigen G(D2) is surface-expressed in Ewing sarcoma and allows for MHC-independent immune targeting. Br. J. Cancer 106, 1123-1133. https://doi.org/10.1038/bjc.2012.57
  44. Kakimoto, T., Matsumine, A., Kageyama, S., Asanuma, K., Matsubara, T., Nakamura, T., Iino, T., Ikeda, H., Shiku, H., and Sudo, A. (2019). Immunohistochemical expression and clinicopathological assessment of the cancer testis antigens NY-ESO-1 and MAGE-A4 in high-grade soft-tissue sarcoma. Oncol. Lett. 17, 3937-3943. https://doi.org/10.3892/ol.2019.10044
  45. Kawaguchi, S., Tsukahara, T., Ida, K., Kimura, S., Murase, M., Kano, M., Emori, M., Nagoya, S., Kaya, M., Torigoe, T., et al. (2012). SYT-SSX breakpoint peptide vaccines in patients with synovial sarcoma: a study from the Japanese Musculoskeletal Oncology Group. Cancer Sci. 103, 1625-1630. https://doi.org/10.1111/j.1349-7006.2012.02370.x
  46. Kelly, C.M., Antonescu, C.R., Bowler, T., Munhoz, R., Chi, P., Dickson, M.A., Gounder, M.M., Keohan, M.L., Movva, S., Dholakia, R., et al. (2020). Objective response rate among patients with locally advanced or metastatic sarcoma treated with talimogene laherparepvec in combination with pembrolizumab: a phase 2 clinical trial. JAMA Oncol. 6, 402-408. https://doi.org/10.1001/jamaoncol.2019.6152
  47. Kim, C., Kim, E.K., Jung, H., Chon, H.J., Han, J.W., Shin, K.H., Hu, H., Kim, K.S., Choi, Y.D., Kim, S., et al. (2016). Prognostic implications of PD-L1 expression in patients with soft tissue sarcoma. BMC Cancer 16, 434.
  48. Kim, H., Cho, Y., Kim, H.S., Kang, D., Cheon, D., Kim, Y.J., Chang, M.J., Lee, K.M., Chang, C.B., Kang, S.B., et al. (2020). A system-level approach identifies HIF-2alpha as a critical regulator of chondrosarcoma progression. Nat. Commun. 11, 5023.
  49. Klemen, N.D., Kelly, C.M., and Bartlett, E.K. (2021). The emerging role of immunotherapy for the treatment of sarcoma. J. Surg. Oncol. 123, 730-738. https://doi.org/10.1002/jso.26306
  50. Krishnamurty, A.T., Shyer, J.A., Thai, M., Gandham, V., Buechler, M.B., Yang, Y.A., Pradhan, R.N., Wang, A.W., Sanchez, P.L., Qu, Y., et al. (2022). LRRC15(+) myofibroblasts dictate the stromal setpoint to suppress tumour immunity. Nature 611, 148-154. https://doi.org/10.1038/s41586-022-05272-1
  51. Lagos, G.G., Izar, B., and Rizvi, N.A. (2020). Beyond tumor PD-L1: emerging genomic biomarkers for checkpoint inhibitor immunotherapy. Am. Soc. Clin. Oncol. Educ. Book 40, 1-11. https://doi.org/10.1200/EDBK_289967
  52. Lee, E.Y., Kim, M., Choi, B.K., Kim, D.H., Choi, I., and You, H.J. (2021a). TJP1 contributes to tumor progression through supporting cell-cell aggregation and communicating with tumor microenvironment in leiomyosarcoma. Mol. Cells 44, 784-794. https://doi.org/10.14348/molcells.2021.0130
  53. Lee, Y.J., Lee, J.B., Ha, S.J., and Kim, H.R. (2021b). Clinical perspectives to overcome acquired resistance to anti-programmed death-1 and anti-programmed death ligand-1 therapy in non-small cell lung cancer. Mol. Cells 44, 363-373. https://doi.org/10.14348/molcells.2021.0044
  54. Li, X., Fan, Q., Peng, X., Yang, S., Wei, S., Liu, J., Yang, L., and Li, H. (2022). Mesenchymal/stromal stem cells: necessary factors in tumour progression. Cell Death Discov. 8, 333.
  55. Li, Y., Geng, P., Jiang, W., Wang, Y., Yao, J., Lin, X., Liu, J., Huang, L., Su, B., and Chen, H. (2014). Enhancement of radiosensitivity by 5-Aza-CdR through activation of G2/M checkpoint response and apoptosis in osteosarcoma cells. Tumour Biol. 35, 4831-4839. https://doi.org/10.1007/s13277-014-1634-5
  56. Liu, T., Han, C., Wang, S., Fang, P., Ma, Z., Xu, L., and Yin, R. (2019). Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J. Hematol. Oncol. 12, 86.
  57. Lodhia, J., Goodluck, G., Tendai, J., Urassa, E., Nkya, G., and Mremi, A. (2022). Case series of high-grade soft tissue sarcoma of the lower limb with delayed diagnosis: experience at a tertiary hospital in northern Tanzania. Int. J. Surg. Case Rep. 97, 107475.
  58. Marabelle, A., Fakih, M., Lopez, J., Shah, M., Shapira-Frommer, R., Nakagawa, K., Chung, H.C., Kindler, H.L., Lopez-Martin, J.A., Miller, W.H., Jr., et al. (2020). Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21, 1353-1365. https://doi.org/10.1016/S1470-2045(20)30445-9
  59. Molgora, M., Esaulova, E., Vermi, W., Hou, J., Chen, Y., Luo, J., Brioschi, S., Bugatti, M., Omodei, A.S., Ricci, B., et al. (2020). TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell 182, 886-900.e17. https://doi.org/10.1016/j.cell.2020.07.013
  60. Monga, V., Mani, H., Hirbe, A., and Milhem, M. (2020). Non-conventional treatments for conventional chondrosarcoma. Cancers (Basel) 12, 1962.
  61. Nafia, I., Toulmonde, M., Bortolotto, D., Chaibi, A., Bodet, D., Rey, C., Velasco, V., Larmonier, C.B., Cerf, L., Adam, J., et al. (2020). IDO targeting in sarcoma: biological and clinical implications. Front. Immunol. 11, 274.
  62. Nakamura, K. and Smyth, M.J. (2020). Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell. Mol. Immunol. 17, 1-12. https://doi.org/10.1038/s41423-019-0306-1
  63. Navai, S.A., Derenzo, C., Joseph, S., Sanber, K., Byrd, T., Zhang, H., Mata, M., Gerken, C., Shree, A., Mathew, P.R., et al. (2019). Abstract LB-147: Administration of HER2-CAR T cells after lymphodepletion safely improves T cell expansion and induces clinical responses in patients with advanced sarcomas. Cancer Res. 79(13 Suppl), LB-147.
  64. Nishikawa, H., Sato, E., Briones, G., Chen, L.M., Matsuo, M., Nagata, Y., Ritter, G., Jager, E., Nomura, H., Kondo, S., et al. (2006). In vivo antigen delivery by a Salmonella typhimurium type III secretion system for therapeutic cancer vaccines. J. Clin. Invest. 116, 1946-1954. https://doi.org/10.1172/JCI28045
  65. O'Donnell, J.S., Teng, M.W.L., and Smyth, M.J. (2019). Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 16, 151-167. https://doi.org/10.1038/s41571-018-0142-8
  66. Ohm, J.E., Gabrilovich, D.I., Sempowski, G.D., Kisseleva, E., Parman, K.S., Nadaf, S., and Carbone, D.P. (2003). VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101, 4878-4886. https://doi.org/10.1182/blood-2002-07-1956
  67. Olivier, T., Pop, D., Chouiter Djebaili, A., Falk, A.T., Iannessi, A., Saada, E., Nettekoven, W., Blay, J.Y., Baque, P., Cupissol, D., et al. (2015). Treating metastatic sarcomas locally: a paradoxe, a rationale, an evidence? Crit. Rev. Oncol. Hematol. 95, 62-77. https://doi.org/10.1016/j.critrevonc.2015.01.004
  68. Panagi, M., Pilavaki, P., Constantinidou, A., and Stylianopoulos, T. (2022). Immunotherapy in soft tissue and bone sarcoma: unraveling the barriers to effectiveness. Theranostics 12, 6106-6129. https://doi.org/10.7150/thno.72800
  69. Patel, S.A., Royce, T.J., Barysauskas, C.M., Thornton, K.A., Raut, C.P., and Baldini, E.H. (2017). Surveillance imaging patterns and outcomes following radiation therapy and radical resection for localized extremity and trunk soft tissue sarcoma. Ann. Surg. Oncol. 24, 1588-1595. https://doi.org/10.1245/s10434-016-5755-5
  70. Pawlik, T.M., Pisters, P.W., Mikula, L., Feig, B.W., Hunt, K.K., Cormier, J.N., Ballo, M.T., Catton, C.N., Jones, J.J., O'Sullivan, B., et al. (2006). Long-term results of two prospective trials of preoperative external beam radiotherapy for localized intermediate- or high-grade retroperitoneal soft tissue sarcoma. Ann. Surg. Oncol. 13, 508-517. https://doi.org/10.1245/ASO.2006.05.035
  71. Paydas, S., Bagir, E.K., Deveci, M.A., and Gonlusen, G. (2016). Clinical and prognostic significance of PD-1 and PD-L1 expression in sarcomas. Med. Oncol. 33, 93.
  72. Petitprez, F., de Reynies, A., Keung, E.Z., Chen, T.W., Sun, C.M., Calderaro, J., Jeng, Y.M., Hsiao, L.P., Lacroix, L., Bougouin, A., et al. (2020). B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556-560. https://doi.org/10.1038/s41586-019-1906-8
  73. Purcell, J.W., Tanlimco, S.G., Hickson, J., Fox, M., Sho, M., Durkin, L., Uziel, T., Powers, R., Foster, K., McGonigal, T., et al. (2018). LRRC15 is a novel mesenchymal protein and stromal target for antibody-drug conjugates. Cancer Res. 78, 4059-4072. https://doi.org/10.1158/0008-5472.CAN-18-0327
  74. Qian, Y., Qiao, S., Dai, Y., Xu, G., Dai, B., Lu, L., Yu, X., Luo, Q., and Zhang, Z. (2017). Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano 11, 9536-9549. https://doi.org/10.1021/acsnano.7b05465
  75. Quante, M., Tu, S.P., Tomita, H., Gonda, T., Wang, S.S., Takashi, S., Baik, G.H., Shibata, W., Diprete, B., Betz, K.S., et al. (2011). Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19, 257-272. https://doi.org/10.1016/j.ccr.2011.01.020
  76. Riedel, R.F., Larrier, N., Dodd, L., Kirsch, D., Martinez, S., and Brigman, B.E. (2009). The clinical management of chondrosarcoma. Curr. Treat. Options Oncol. 10, 94-106. https://doi.org/10.1007/s11864-009-0088-2
  77. Rodell, C.B., Arlauckas, S.P., Cuccarese, M.F., Garris, C.S., Li, R., Ahmed, M.S., Kohler, R.H., Pittet, M.J., and Weissleder, R. (2018). TLR7/8-agonistloaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2, 578-588. https://doi.org/10.1038/s41551-018-0236-8
  78. Roth, M., Linkowski, M., Tarim, J., Piperdi, S., Sowers, R., Geller, D., Gill, J., and Gorlick, R. (2014). Ganglioside GD2 as a therapeutic target for antibody-mediated therapy in patients with osteosarcoma. Cancer 120, 548-554. https://doi.org/10.1002/cncr.28461
  79. Rytlewski, J., Brockman, Q.R., Dodd, R.D., Milhem, M., and Monga, V. (2022). Epigenetic modulation in sensitizing metastatic sarcomas to therapies and overcoming resistance. Cancer Drug Resist. 5, 25-35. https://doi.org/10.20517/cdr.2021.88
  80. Rytlewski, J., Milhem, M.M., and Monga, V. (2021). Turning 'Cold' tumors 'Hot': immunotherapies in sarcoma. Ann. Transl. Med. 9, 1039.
  81. Samiei, A., Gjertson, D.W., Memarzadeh, S., Konecny, G.E., and Moatamed, N.A. (2022). Expression of immune checkpoint regulators, programmed death-ligand 1 (PD-L1/PD-1), cytotoxic T lymphocyte antigen 4 (CTLA-4), and indolaimine-2, 3-deoxygenase (IDO) in uterine mesenchymal tumors. Diagn. Pathol. 17, 70.
  82. Sannino, G., Marchetto, A., Kirchner, T., and Grunewald, T.G.P. (2017). Epithelial-to-mesenchymal and mesenchymal-to-epithelial transition in mesenchymal tumors: a paradox in sarcomas? Cancer Res. 77, 4556-4561. https://doi.org/10.1158/0008-5472.CAN-17-0032
  83. Sato, Y., Nabeta, Y., Tsukahara, T., Hirohashi, Y., Syunsui, R., Maeda, A., Sahara, H., Ikeda, H., Torigoe, T., Ichimiya, S., et al. (2002). Detection and induction of CTLs specific for SYT-SSX-derived peptides in HLA-A24(+) patients with synovial sarcoma. J. Immunol. 169, 1611-1618. https://doi.org/10.4049/jimmunol.169.3.1611
  84. Saxena, M., van der Burg, S.H., Melief, C.J.M., and Bhardwaj, N. (2021). Therapeutic cancer vaccines. Nat. Rev. Cancer 21, 360-378. https://doi.org/10.1038/s41568-021-00346-0
  85. Siegel, R.L., Miller, K.D., Fuchs, H.E., and Jemal, A. (2022). Cancer statistics, 2022. CA Cancer J. Clin. 72, 7-33. https://doi.org/10.3322/caac.21708
  86. Smolle, M.A., Herbsthofer, L., Granegger, B., Goda, M., Brcic, I., Bergovec, M., Scheipl, S., Prietl, B., Pichler, M., Gerger, A., et al. (2021). T-regulatory cells predict clinical outcome in soft tissue sarcoma patients: a clinic-pathological study. Br. J. Cancer 125, 717-724. https://doi.org/10.1038/s41416-021-01456-0
  87. Somaiah, N., Conley, A.P., Parra, E.R., Lin, H., Amini, B., Solis Soto, L., Salazar, R., Barreto, C., Chen, H., Gite, S., et al. (2022). Durvalumab plus tremelimumab in advanced or metastatic soft tissue and bone sarcomas: a single-centre phase 2 trial. Lancet Oncol. 23, 1156-1166. https://doi.org/10.1016/S1470-2045(22)00392-8
  88. Squires, M.H., Ethun, C.G., Suarez-Kelly, L.P., Yu, P.Y., Hughes, T.M., Shelby, R.D., Tran, T.B., Poultsides, G., Charlson, J., Gamblin, T.C., et al. (2020). Trends in the use of adjuvant chemotherapy for high-grade truncal and extremity soft tissue sarcomas. J. Surg. Res. 245, 577-586. https://doi.org/10.1016/j.jss.2019.08.002
  89. Strickler, J.H., Hanks, B.A., and Khasraw, M. (2021). Tumor mutational burden as a predictor of immunotherapy response: is more always better? Clin. Cancer Res. 27, 1236-1241. https://doi.org/10.1158/1078-0432.CCR-20-3054
  90. Tagliamonte, M., Petrizzo, A., Tornesello, M.L., Buonaguro, F.M., and Buonaguro, L. (2014). Antigen-specific vaccines for cancer treatment. Hum. Vaccin. Immunother. 10, 3332-3346. https://doi.org/10.4161/21645515.2014.973317
  91. Tan, S., Li, D., and Zhu, X. (2020). Cancer immunotherapy: pros, cons and beyond. Biomed. Pharmacother. 124, 109821.
  92. Tang, F., Tie, Y., Wei, Y.Q., Tu, C.Q., and Wei, X.W. (2021). Targeted and immuno-based therapies in sarcoma: mechanisms and advances in clinical trials. Biochim. Biophys. Acta Rev. Cancer 1876, 188606.
  93. Tawbi, H.A., Burgess, M., Bolejack, V., Van Tine, B.A., Schuetze, S.M., Hu, J., D'Angelo, S., Attia, S., Riedel, R.F., Priebat, D.A., et al. (2017). Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 18, 1493-1501. https://doi.org/10.1016/S1470-2045(17)30624-1
  94. Thorkildsen, J., Norum, O.J., Myklebust, T.A., and Zaikova, O. (2021). Chondrosarcoma local recurrence in the Cancer Registry of Norway cohort (1990-2013): patterns and impact. J. Surg. Oncol. 123, 510-520. https://doi.org/10.1002/jso.26308
  95. Tsagozis, P., Augsten, M., Zhang, Y., Li, T., Hesla, A., Bergh, J., Haglund, F., Tobin, N.P., and Ehnman, M. (2019). An immunosuppressive macrophage profile attenuates the prognostic impact of CD20-positive B cells in human soft tissue sarcoma. Cancer Immunol. Immunother. 68, 927-936. https://doi.org/10.1007/s00262-019-02322-y
  96. Tu, B., Zhu, J., Liu, S., Wang, L., Fan, Q., Hao, Y., Fan, C., and Tang, T.T. (2016). Mesenchymal stem cells promote osteosarcoma cell survival and drug resistance through activation of STAT3. Oncotarget 7, 48296-48308. https://doi.org/10.18632/oncotarget.10219
  97. Turley, S.J., Cremasco, V., and Astarita, J.L. (2015). Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol. 15, 669-682. https://doi.org/10.1038/nri3902
  98. von Konow, A., Ghanei, I., Styring, E., and Vult von Steyern, F. (2021). Late local recurrence and metastasis in soft tissue sarcoma of the extremities and trunk wall: better outcome after treatment of late events compared with early. Ann. Surg. Oncol. 28, 7891-7902. https://doi.org/10.1245/s10434-021-09942-8
  99. Waldman, A.D., Fritz, J.M., and Lenardo, M.J. (2020). A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651-668. https://doi.org/10.1038/s41577-020-0306-5
  100. Weber, J. (2007). Review: anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist 12, 864-872. https://doi.org/10.1634/theoncologist.12-7-864
  101. Wei, R., Dean, D.C., Thanindratarn, P., Hornicek, F.J., Guo, W., and Duan, Z. (2020). Cancer testis antigens in sarcoma: expression, function and immunotherapeutic application. Cancer Lett. 479, 54-60. https://doi.org/10.1016/j.canlet.2019.10.024
  102. Weng, W., Yu, L., Li, Z., Tan, C., Lv, J., Lao, I.W., Hu, W., Deng, Z., Liu, Z., Wang, J., et al. (2022). The immune subtypes and landscape of sarcomas. BMC Immunol. 23, 46.
  103. Whitehurst, A.W. (2014). Cause and consequence of cancer/testis antigen activation in cancer. Annu. Rev. Pharmacol. Toxicol. 54, 251-272. https://doi.org/10.1146/annurev-pharmtox-011112-140326
  104. Xie, C., Whalley, N., Adasonla, K., Grimer, R., and Jeys, L. (2015). Can local recurrence of a sacral chordoma be treated by further surgery? Bone Joint J. 97-B, 711-715.
  105. Xie, L., Yang, Y., Guo, W., Che, D., Xu, J., Sun, X., Liu, K., Ren, T., Liu, X., Yang, Y., et al. (2021). The clinical implications of tumor mutational burden in osteosarcoma. Front. Oncol. 10, 595527.
  106. Yan, M., Schwaederle, M., Arguello, D., Millis, S.Z., Gatalica, Z., and Kurzrock, R. (2015). HER2 expression status in diverse cancers: review of results from 37,992 patients. Cancer Metastasis Rev. 34, 157-164. https://doi.org/10.1007/s10555-015-9552-6
  107. Yang, W., Lee, K.W., Srivastava, R.M., Kuo, F., Krishna, C., Chowell, D., Makarov, V., Hoen, D., Dalin, M.G., Wexler, L., et al. (2019). Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat. Med. 25, 767-775. https://doi.org/10.1038/s41591-019-0434-2
  108. Zamarin, D., Hamid, O., Nayak-Kapoor, A., Sahebjam, S., Sznol, M., Collaku, A., Fox, F.E., Marshall, M.A., and Hong, D.S. (2020). Mogamulizumab in combination with durvalumab or tremelimumab in patients with advanced solid tumors: a phase I study. Clin. Cancer Res. 26, 4531-4541. https://doi.org/10.1158/1078-0432.CCR-20-0328
  109. Zhang, H., Huang, W., Feng, Q., Sun, W., Yan, W., Wang, C., Zhang, J., Huang, K., Yu, L., Qu, X., et al. (2022). Clinical significance and risk factors of local recurrence in synovial sarcoma: a retrospective analysis of 171 cases. Front. Surg. 8, 736146.
  110. Zhang, Y. and Zhang, Z. (2020). The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 17, 807-821. https://doi.org/10.1038/s41423-020-0488-6
  111. Zhao, L. and Cao, Y.J. (2019). Engineered T cell therapy for cancer in the clinic. Front. Immunol. 10, 2250.
  112. Zhao, R., Yu, X., Feng, Y., Yang, Z., Chen, X., Wand, J., Ma, S., Zhang, Z., and Guo, X. (2018). Local recurrence is correlated with decreased overall survival in patients with intermediate high-grade localized primary soft tissue sarcoma of extremity and abdominothoracic wall. Asia Pac. J. Clin. Oncol. 14, e109-e115. https://doi.org/10.1111/ajco.12807
  113. Zheng, W., Xiao, H., Liu, H., and Zhou, Y. (2015). Expression of programmed death 1 is correlated with progression of osteosarcoma. APMIS 123, 102-107. https://doi.org/10.1111/apm.12311
  114. Zheng, Y., Wang, G., Chen, R., Hua, Y., and Cai, Z. (2018). Mesenchymal stem cells in the osteosarcoma microenvironment: their biological properties, influence on tumor growth, and therapeutic implications. Stem Cell Res. Ther. 9, 22.
  115. Zhou, Y., Yang, D., Yang, Q., Lv, X., Huang, W., Zhou, Z., Wang, Y., Zhang, Z., Yuan, T., Ding, X., et al. (2020). Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat. Commun. 11, 6322.
  116. Zhu, M.M.T., Shenasa, E., and Nielsen, T.O. (2020). Sarcomas: immune biomarker expression and checkpoint inhibitor trials. Cancer Treat. Rev. 91, 102115.
  117. Zitvogel, L., Tesniere, A., and Kroemer, G. (2006). Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat. Rev. Immunol. 6, 715-727. https://doi.org/10.1038/nri1936
  118. Zou, C., Shen, J., Tang, Q., Yang, Z., Yin, J., Li, Z., Xie, X., Huang, G., Lev, D., and Wang, J. (2012). Cancer-testis antigens expressed in osteosarcoma identified by gene microarray correlate with a poor patient prognosis. Cancer 118, 1845-1855. https://doi.org/10.1002/cncr.26486