Acknowledgement
This work was supported by grants from the National Research Foundation of Korea (NRF-2023R1A2C3003864 and RS-2023-00213119); Korea Drug Development Fund funded by Ministry of Science and ICT, Ministry of Trade, Industry, and Energy, and Ministry of Health and Welfare (RS-2023-00217266); the Institute for Basic Science from the Ministry of Science, ICT, and Future Planning of Korea (IBS-R008-D1); the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (HI21C1218); and Suh Kyungbae foundation (18010068).
References
- Abramson, J.S., Palomba, M.L., Gordon, L.I., Lunning, M.A., Wang, M., Arnason, J., Mehta, A., Purev, E., Maloney, D.G., Andreadis, C., et al. (2020). Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396, 839-852. https://doi.org/10.1016/S0140-6736(20)31366-0
- Ahmed, N., Brawley, V.S., Hegde, M., Robertson, C., Ghazi, A., Gerken, C., Liu, E., Dakhova, O., Ashoori, A., Corder, A., et al. (2015). Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 33, 1688-1696. https://doi.org/10.1200/JCO.2014.58.0225
- Ahmed, N., Salsman, V.S., Yvon, E., Louis, C.U., Perlaky, L., Wels, W.S., Dishop, M.K., Kleinerman, E.E., Pule, M., Rooney, C.M., et al. (2009). Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression. Mol. Ther. 17, 1779-1787. https://doi.org/10.1038/mt.2009.133
- Arce Vargas, F., Furness, A.J.S., Solomon, I., Joshi, K., Mekkaoui, L., Lesko, M.H., Miranda Rota, E., Dahan, R., Georgiou, A., Sledzinska, A., et al. (2017). Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity 46, 577-586. https://doi.org/10.1016/j.immuni.2017.03.013
- Ayodele, O. and Razak, A.R.A. (2020). Immunotherapy in soft-tissue sarcoma. Curr. Oncol. 27(Suppl 1), 17-23. https://doi.org/10.3747/co.27.5407
- Balachandran, V.P., Cavnar, M.J., Zeng, S., Bamboat, Z.M., Ocuin, L.M., Obaid, H., Sorenson, E.C., Popow, R., Ariyan, C., Rossi, F., et al. (2011). Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat. Med. 17, 1094-1100. https://doi.org/10.1038/nm.2438
- Beatty, G.L. and Gladney, W.L. (2015). Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 21, 687-692. https://doi.org/10.1158/1078-0432.CCR-14-1860
- Blasius, F., Delbruck, H., Hildebrand, F., and Hofmann, U.K. (2022). Surgical treatment of bone sarcoma. Cancers (Basel) 14, 2694.
- Cancer Genome Atlas Research Network (2017). Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell 171, 950-965.e28. https://doi.org/10.1016/j.cell.2017.10.014
- Charan, M., Dravid, P., Cam, M., Audino, A., Gross, A.C., Arnold, M.A., Roberts, R.D., Cripe, T.P., Pertsemlidis, A., Houghton, P.J., et al. (2020). GD2-directed CAR-T cells in combination with HGF-targeted neutralizing antibody (AMG102) prevent primary tumor growth and metastasis in Ewing sarcoma. Int. J. Cancer 146, 3184-3195. https://doi.org/10.1002/ijc.32743
- Chen, H.H., Zhang, T.N., Zhang, F.Y., and Zhang, T. (2022). Non-coding RNAs in drug and radiation resistance of bone and soft-tissue sarcoma: a systematic review. Elife 11, e79655.
- D'Angelo, S.P., Attia, S., Blay, J.Y., Strauss, S.J., Morales, C.M.V., Razak, A.R.A., Winkle, E.V., Annareddy, T., Sattigari, C., Diamantopoulos, E., et al. (2022). Identification of response stratification factors from pooled efficacy analyses of afamitresgene autoleucel ("Afami-cel" [Formerly ADP-A2M4]) in metastatic synovial sarcoma and myxoid/round cell liposarcoma phase 1 and phase 2 trials. J. Clin. Oncol. 40(16 Suppl), 11562.
- D'Angelo, S.P., Mahoney, M.R., Van Tine, B.A., Atkins, J., Milhem, M.M., Jahagirdar, B.N., Antonescu, C.R., Horvath, E., Tap, W.D., Schwartz, G.K., et al. (2018). Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol. 19, 416-426. https://doi.org/10.1016/S1470-2045(18)30006-8
- D'Angelo, S.P., Shoushtari, A.N., Agaram, N.P., Kuk, D., Qin, L.X., Carvajal, R.D., Dickson, M.A., Gounder, M., Keohan, M.L., Schwartz, G.K., et al. (2015). Prevalence of tumor-infiltrating lymphocytes and PD-L1 expression in the soft tissue sarcoma microenvironment. Hum. Pathol. 46, 357-365. https://doi.org/10.1016/j.humpath.2014.11.001
- de Jong, Y., Ingola, M., Briaire-de Bruijn, I.H., Kruisselbrink, A.B., Venneker, S., Palubeckaite, I., Heijs, B., Cleton-Jansen, A.M., Haas, R.L.M., and Bovee, J. (2019). Radiotherapy resistance in chondrosarcoma cells; a possible correlation with alterations in cell cycle related genes. Clin. Sarcoma Res. 9, 9.
- Demetri, G.D., Luke, J.J., Hollebecque, A., Powderly, J.D., 2nd, Spira, A.I., Subbiah, V., Naumovski, L., Chen, C., Fang, H., Lai, D.W., et al. (2021). First-in-human phase I study of ABBV-085, an antibody-drug conjugate targeting LRRC15, in sarcomas and other advanced solid tumors. Clin. Cancer Res. 27, 3556-3566. https://doi.org/10.1158/1078-0432.CCR-20-4513
- Devalaraja, S., To, T.K.J., Folkert, I.W., Natesan, R., Alam, M.Z., Li, M., Tada, Y., Budagyan, K., Dang, M.T., Zhai, L., et al. (2020). Tumor-derived retinoic acid regulates intratumoral monocyte differentiation to promote immune suppression. Cell 180, 1098-1114.e16. https://doi.org/10.1016/j.cell.2020.02.042
- Dhodapkar, M.V., Sznol, M., Zhao, B., Wang, D., Carvajal, R.D., Keohan, M.L., Chuang, E., Sanborn, R.E., Lutzky, J., Powderly, J., et al. (2014). Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci. Transl. Med. 6, 232ra51.
- Doig, K.D., Fellowes, A., Scott, P., and Fox, S.B. (2022). Tumour mutational burden: an overview for pathologists. Pathology 54, 249-253. https://doi.org/10.1016/j.pathol.2021.11.008
- Du, X.H., Wei, H., Zhang, P., Yao, W.T., and Cai, Q.Q. (2020). Heterogeneity of soft tissue sarcomas and its implications in targeted therapy. Front. Oncol. 10, 564852.
- Edwards, S.C., Hoevenaar, W.H.M., and Coffelt, S.B. (2021). Emerging immunotherapies for metastasis. Br. J. Cancer 124, 37-48. https://doi.org/10.1038/s41416-020-01160-5
- Epping, M.T., Wang, L., Edel, M.J., Carlee, L., Hernandez, M., and Bernards, R. (2005). The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell 122, 835-847. https://doi.org/10.1016/j.cell.2005.07.003
- Finkelstein, S.E., Fishman, M., Conley, A.P., Gabrilovich, D., Antonia, S., and Chiappori, A. (2012). Cellular immunotherapy for soft tissue sarcomas. Immunotherapy 4, 283-290. https://doi.org/10.2217/imt.12.3
- Gelderblom, H., Hogendoorn, P.C., Dijkstra, S.D., van Rijswijk, C.S., Krol, A.D., Taminiau, A.H., and Bovee, J.V. (2008). The clinical approach towards chondrosarcoma. Oncologist 13, 320-329. https://doi.org/10.1634/theoncologist.2007-0237
- Goodman, A.M., Kato, S., Bazhenova, L., Patel, S.P., Frampton, G.M., Miller, V., Stephens, P.J., Daniels, G.A., and Kurzrock, R. (2017). Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol. Cancer Ther. 16, 2598-2608. https://doi.org/10.1158/1535-7163.MCT-17-0386
- Goorin, A.M., Delorey, M.J., Lack, E.E., Gelber, R.D., Price, K., Cassady, J.R., Levey, R., Tapper, D., Jaffe, N., and Link, M. (1984). Prognostic significance of complete surgical resection of pulmonary metastases in patients with osteogenic sarcoma: analysis of 32 patients. J. Clin. Oncol. 2, 425-431. https://doi.org/10.1200/JCO.1984.2.5.425
- Gronchi, A. (2021). Surgery in soft tissue sarcoma: the thin line between a surgical or more conservative approach. Future Oncol. 17(21s), 3-6. https://doi.org/10.2217/fon-2021-0449
- Grunewald, T.G., Alonso, M., Avnet, S., Banito, A., Burdach, S., CidreAranaz, F., Di Pompo, G., Distel, M., Dorado-Garcia, H., Garcia-Castro, J., et al. (2020). Sarcoma treatment in the era of molecular medicine. EMBO Mol. Med. 12, e11131.
- Gubin, M.M., Zhang, X., Schuster, H., Caron, E., Ward, J.P., Noguchi, T., Ivanova, Y., Hundal, J., Arthur, C.D., Krebber, W.J., et al. (2014). Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577-581. https://doi.org/10.1038/nature13988
- Hashimoto, K., Nishimura, S., Ito, T., Oka, N., Kakinoki, R., and Akagi, M. (2022). Clinicopathological assessment of cancer/testis antigens NY‑ESO‑1 and MAGE‑A4 in osteosarcoma. Eur. J. Histochem. 66, 3377.
- Hemminger, J.A., Toland, A.E., Scharschmidt, T.J., Mayerson, J.L., Guttridge, D.C., and Iwenofu, O.H. (2014). Expression of cancer-testis antigens MAGEA1, MAGEA3, ACRBP, PRAME, SSX2, and CTAG2 in myxoid and round cell liposarcoma. Mod. Pathol. 27, 1238-1245. https://doi.org/10.1038/modpathol.2013.244
- Highfill, S.L., Cui, Y., Giles, A.J., Smith, J.P., Zhang, H., Morse, E., Kaplan, R.N., and Mackall, C.L. (2014). Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci. Transl. Med. 6, 237ra67.
- Hoefkens, F., Dehandschutter, C., Somville, J., Meijnders, P., and Van Gestel, D. (2016). Soft tissue sarcoma of the extremities: pending questions on surgery and radiotherapy. Radiat. Oncol. 11, 136.
- Holmgaard, R.B., Zamarin, D., Munn, D.H., Wolchok, J.D., and Allison, J.P. (2013). Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J. Exp. Med. 210, 1389-1402. https://doi.org/10.1084/jem.20130066
- Huang, X., Wang, L., Guo, H., Zhang, W., and Shao, Z. (2022). Single-cell transcriptomics reveals the regulative roles of cancer associated fibroblasts in tumor immune microenvironment of recurrent osteosarcoma. Theranostics 12, 5877-5887. https://doi.org/10.7150/thno.73714
- Hui, J.Y. (2016). Epidemiology and etiology of sarcomas. Surg. Clin. North Am. 96, 901-914. https://doi.org/10.1016/j.suc.2016.05.005
- Husain, M., Quiroga, D., Kim, H.G., Lenobel, S., Xu, M., Iwenofu, H., Chen, J.L., Verschraegen, C., Liebner, D., and Tinoco, G. (2023). Clinical markers of immunotherapy outcomes in advanced sarcoma. BMC Cancer 23, 326.
- Ingley, K.M., Maleddu, A., Grange, F.L., Gerrand, C., Bleyer, A., Yasmin, E., Whelan, J., and Strauss, S.J. (2022). Current approaches to management of bone sarcoma in adolescent and young adult patients. Pediatr. Blood Cancer 69, e29442.
- Iura, K., Kohashi, K., Ishii, T., Maekawa, A., Bekki, H., Otsuka, H., Yamada, Y., Yamamoto, H., Matsumoto, Y., Iwamoto, Y., et al. (2017). MAGEA4 expression in bone and soft tissue tumors: its utility as a target for immunotherapy and diagnostic marker combined with NY-ESO-1. Virchows Arch. 471, 383-392. https://doi.org/10.1007/s00428-017-2206-z
- June, C.H., O'Connor, R.S., Kawalekar, O.U., Ghassemi, S., and Milone, M.C. (2018). CAR T cell immunotherapy for human cancer. Science 359, 1361-1365. https://doi.org/10.1126/science.aar6711
- Jungbluth, A.A., Antonescu, C.R., Busam, K.J., Iversen, K., Kolb, D., Coplan, K., Chen, Y.T., Stockert, E., Ladanyi, M., and Old, L.J. (2001). Monophasic and biphasic synovial sarcomas abundantly express cancer/testis antigen NY-ESO-1 but not MAGE-A1 or CT7. Int. J. Cancer 94, 252-256. https://doi.org/10.1002/ijc.1451
- Juretic, A., Spagnoli, G.C., Schultz-Thater, E., and Sarcevic, B. (2003). Cancer/testis tumour-associated antigens: immunohistochemical detection with monoclonal antibodies. Lancet Oncol. 4, 104-109. https://doi.org/10.1016/S1470-2045(03)00982-3
- Kailayangiri, S., Altvater, B., Meltzer, J., Pscherer, S., Luecke, A., Dierkes, C., Titze, U., Leuchte, K., Landmeier, S., Hotfilder, M., et al. (2012). The ganglioside antigen G(D2) is surface-expressed in Ewing sarcoma and allows for MHC-independent immune targeting. Br. J. Cancer 106, 1123-1133. https://doi.org/10.1038/bjc.2012.57
- Kakimoto, T., Matsumine, A., Kageyama, S., Asanuma, K., Matsubara, T., Nakamura, T., Iino, T., Ikeda, H., Shiku, H., and Sudo, A. (2019). Immunohistochemical expression and clinicopathological assessment of the cancer testis antigens NY-ESO-1 and MAGE-A4 in high-grade soft-tissue sarcoma. Oncol. Lett. 17, 3937-3943. https://doi.org/10.3892/ol.2019.10044
- Kawaguchi, S., Tsukahara, T., Ida, K., Kimura, S., Murase, M., Kano, M., Emori, M., Nagoya, S., Kaya, M., Torigoe, T., et al. (2012). SYT-SSX breakpoint peptide vaccines in patients with synovial sarcoma: a study from the Japanese Musculoskeletal Oncology Group. Cancer Sci. 103, 1625-1630. https://doi.org/10.1111/j.1349-7006.2012.02370.x
- Kelly, C.M., Antonescu, C.R., Bowler, T., Munhoz, R., Chi, P., Dickson, M.A., Gounder, M.M., Keohan, M.L., Movva, S., Dholakia, R., et al. (2020). Objective response rate among patients with locally advanced or metastatic sarcoma treated with talimogene laherparepvec in combination with pembrolizumab: a phase 2 clinical trial. JAMA Oncol. 6, 402-408. https://doi.org/10.1001/jamaoncol.2019.6152
- Kim, C., Kim, E.K., Jung, H., Chon, H.J., Han, J.W., Shin, K.H., Hu, H., Kim, K.S., Choi, Y.D., Kim, S., et al. (2016). Prognostic implications of PD-L1 expression in patients with soft tissue sarcoma. BMC Cancer 16, 434.
- Kim, H., Cho, Y., Kim, H.S., Kang, D., Cheon, D., Kim, Y.J., Chang, M.J., Lee, K.M., Chang, C.B., Kang, S.B., et al. (2020). A system-level approach identifies HIF-2alpha as a critical regulator of chondrosarcoma progression. Nat. Commun. 11, 5023.
- Klemen, N.D., Kelly, C.M., and Bartlett, E.K. (2021). The emerging role of immunotherapy for the treatment of sarcoma. J. Surg. Oncol. 123, 730-738. https://doi.org/10.1002/jso.26306
- Krishnamurty, A.T., Shyer, J.A., Thai, M., Gandham, V., Buechler, M.B., Yang, Y.A., Pradhan, R.N., Wang, A.W., Sanchez, P.L., Qu, Y., et al. (2022). LRRC15(+) myofibroblasts dictate the stromal setpoint to suppress tumour immunity. Nature 611, 148-154. https://doi.org/10.1038/s41586-022-05272-1
- Lagos, G.G., Izar, B., and Rizvi, N.A. (2020). Beyond tumor PD-L1: emerging genomic biomarkers for checkpoint inhibitor immunotherapy. Am. Soc. Clin. Oncol. Educ. Book 40, 1-11. https://doi.org/10.1200/EDBK_289967
- Lee, E.Y., Kim, M., Choi, B.K., Kim, D.H., Choi, I., and You, H.J. (2021a). TJP1 contributes to tumor progression through supporting cell-cell aggregation and communicating with tumor microenvironment in leiomyosarcoma. Mol. Cells 44, 784-794. https://doi.org/10.14348/molcells.2021.0130
- Lee, Y.J., Lee, J.B., Ha, S.J., and Kim, H.R. (2021b). Clinical perspectives to overcome acquired resistance to anti-programmed death-1 and anti-programmed death ligand-1 therapy in non-small cell lung cancer. Mol. Cells 44, 363-373. https://doi.org/10.14348/molcells.2021.0044
- Li, X., Fan, Q., Peng, X., Yang, S., Wei, S., Liu, J., Yang, L., and Li, H. (2022). Mesenchymal/stromal stem cells: necessary factors in tumour progression. Cell Death Discov. 8, 333.
- Li, Y., Geng, P., Jiang, W., Wang, Y., Yao, J., Lin, X., Liu, J., Huang, L., Su, B., and Chen, H. (2014). Enhancement of radiosensitivity by 5-Aza-CdR through activation of G2/M checkpoint response and apoptosis in osteosarcoma cells. Tumour Biol. 35, 4831-4839. https://doi.org/10.1007/s13277-014-1634-5
- Liu, T., Han, C., Wang, S., Fang, P., Ma, Z., Xu, L., and Yin, R. (2019). Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J. Hematol. Oncol. 12, 86.
- Lodhia, J., Goodluck, G., Tendai, J., Urassa, E., Nkya, G., and Mremi, A. (2022). Case series of high-grade soft tissue sarcoma of the lower limb with delayed diagnosis: experience at a tertiary hospital in northern Tanzania. Int. J. Surg. Case Rep. 97, 107475.
- Marabelle, A., Fakih, M., Lopez, J., Shah, M., Shapira-Frommer, R., Nakagawa, K., Chung, H.C., Kindler, H.L., Lopez-Martin, J.A., Miller, W.H., Jr., et al. (2020). Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21, 1353-1365. https://doi.org/10.1016/S1470-2045(20)30445-9
- Molgora, M., Esaulova, E., Vermi, W., Hou, J., Chen, Y., Luo, J., Brioschi, S., Bugatti, M., Omodei, A.S., Ricci, B., et al. (2020). TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell 182, 886-900.e17. https://doi.org/10.1016/j.cell.2020.07.013
- Monga, V., Mani, H., Hirbe, A., and Milhem, M. (2020). Non-conventional treatments for conventional chondrosarcoma. Cancers (Basel) 12, 1962.
- Nafia, I., Toulmonde, M., Bortolotto, D., Chaibi, A., Bodet, D., Rey, C., Velasco, V., Larmonier, C.B., Cerf, L., Adam, J., et al. (2020). IDO targeting in sarcoma: biological and clinical implications. Front. Immunol. 11, 274.
- Nakamura, K. and Smyth, M.J. (2020). Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell. Mol. Immunol. 17, 1-12. https://doi.org/10.1038/s41423-019-0306-1
- Navai, S.A., Derenzo, C., Joseph, S., Sanber, K., Byrd, T., Zhang, H., Mata, M., Gerken, C., Shree, A., Mathew, P.R., et al. (2019). Abstract LB-147: Administration of HER2-CAR T cells after lymphodepletion safely improves T cell expansion and induces clinical responses in patients with advanced sarcomas. Cancer Res. 79(13 Suppl), LB-147.
- Nishikawa, H., Sato, E., Briones, G., Chen, L.M., Matsuo, M., Nagata, Y., Ritter, G., Jager, E., Nomura, H., Kondo, S., et al. (2006). In vivo antigen delivery by a Salmonella typhimurium type III secretion system for therapeutic cancer vaccines. J. Clin. Invest. 116, 1946-1954. https://doi.org/10.1172/JCI28045
- O'Donnell, J.S., Teng, M.W.L., and Smyth, M.J. (2019). Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 16, 151-167. https://doi.org/10.1038/s41571-018-0142-8
- Ohm, J.E., Gabrilovich, D.I., Sempowski, G.D., Kisseleva, E., Parman, K.S., Nadaf, S., and Carbone, D.P. (2003). VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101, 4878-4886. https://doi.org/10.1182/blood-2002-07-1956
- Olivier, T., Pop, D., Chouiter Djebaili, A., Falk, A.T., Iannessi, A., Saada, E., Nettekoven, W., Blay, J.Y., Baque, P., Cupissol, D., et al. (2015). Treating metastatic sarcomas locally: a paradoxe, a rationale, an evidence? Crit. Rev. Oncol. Hematol. 95, 62-77. https://doi.org/10.1016/j.critrevonc.2015.01.004
- Panagi, M., Pilavaki, P., Constantinidou, A., and Stylianopoulos, T. (2022). Immunotherapy in soft tissue and bone sarcoma: unraveling the barriers to effectiveness. Theranostics 12, 6106-6129. https://doi.org/10.7150/thno.72800
- Patel, S.A., Royce, T.J., Barysauskas, C.M., Thornton, K.A., Raut, C.P., and Baldini, E.H. (2017). Surveillance imaging patterns and outcomes following radiation therapy and radical resection for localized extremity and trunk soft tissue sarcoma. Ann. Surg. Oncol. 24, 1588-1595. https://doi.org/10.1245/s10434-016-5755-5
- Pawlik, T.M., Pisters, P.W., Mikula, L., Feig, B.W., Hunt, K.K., Cormier, J.N., Ballo, M.T., Catton, C.N., Jones, J.J., O'Sullivan, B., et al. (2006). Long-term results of two prospective trials of preoperative external beam radiotherapy for localized intermediate- or high-grade retroperitoneal soft tissue sarcoma. Ann. Surg. Oncol. 13, 508-517. https://doi.org/10.1245/ASO.2006.05.035
- Paydas, S., Bagir, E.K., Deveci, M.A., and Gonlusen, G. (2016). Clinical and prognostic significance of PD-1 and PD-L1 expression in sarcomas. Med. Oncol. 33, 93.
- Petitprez, F., de Reynies, A., Keung, E.Z., Chen, T.W., Sun, C.M., Calderaro, J., Jeng, Y.M., Hsiao, L.P., Lacroix, L., Bougouin, A., et al. (2020). B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556-560. https://doi.org/10.1038/s41586-019-1906-8
- Purcell, J.W., Tanlimco, S.G., Hickson, J., Fox, M., Sho, M., Durkin, L., Uziel, T., Powers, R., Foster, K., McGonigal, T., et al. (2018). LRRC15 is a novel mesenchymal protein and stromal target for antibody-drug conjugates. Cancer Res. 78, 4059-4072. https://doi.org/10.1158/0008-5472.CAN-18-0327
- Qian, Y., Qiao, S., Dai, Y., Xu, G., Dai, B., Lu, L., Yu, X., Luo, Q., and Zhang, Z. (2017). Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano 11, 9536-9549. https://doi.org/10.1021/acsnano.7b05465
- Quante, M., Tu, S.P., Tomita, H., Gonda, T., Wang, S.S., Takashi, S., Baik, G.H., Shibata, W., Diprete, B., Betz, K.S., et al. (2011). Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19, 257-272. https://doi.org/10.1016/j.ccr.2011.01.020
- Riedel, R.F., Larrier, N., Dodd, L., Kirsch, D., Martinez, S., and Brigman, B.E. (2009). The clinical management of chondrosarcoma. Curr. Treat. Options Oncol. 10, 94-106. https://doi.org/10.1007/s11864-009-0088-2
- Rodell, C.B., Arlauckas, S.P., Cuccarese, M.F., Garris, C.S., Li, R., Ahmed, M.S., Kohler, R.H., Pittet, M.J., and Weissleder, R. (2018). TLR7/8-agonistloaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2, 578-588. https://doi.org/10.1038/s41551-018-0236-8
- Roth, M., Linkowski, M., Tarim, J., Piperdi, S., Sowers, R., Geller, D., Gill, J., and Gorlick, R. (2014). Ganglioside GD2 as a therapeutic target for antibody-mediated therapy in patients with osteosarcoma. Cancer 120, 548-554. https://doi.org/10.1002/cncr.28461
- Rytlewski, J., Brockman, Q.R., Dodd, R.D., Milhem, M., and Monga, V. (2022). Epigenetic modulation in sensitizing metastatic sarcomas to therapies and overcoming resistance. Cancer Drug Resist. 5, 25-35. https://doi.org/10.20517/cdr.2021.88
- Rytlewski, J., Milhem, M.M., and Monga, V. (2021). Turning 'Cold' tumors 'Hot': immunotherapies in sarcoma. Ann. Transl. Med. 9, 1039.
- Samiei, A., Gjertson, D.W., Memarzadeh, S., Konecny, G.E., and Moatamed, N.A. (2022). Expression of immune checkpoint regulators, programmed death-ligand 1 (PD-L1/PD-1), cytotoxic T lymphocyte antigen 4 (CTLA-4), and indolaimine-2, 3-deoxygenase (IDO) in uterine mesenchymal tumors. Diagn. Pathol. 17, 70.
- Sannino, G., Marchetto, A., Kirchner, T., and Grunewald, T.G.P. (2017). Epithelial-to-mesenchymal and mesenchymal-to-epithelial transition in mesenchymal tumors: a paradox in sarcomas? Cancer Res. 77, 4556-4561. https://doi.org/10.1158/0008-5472.CAN-17-0032
- Sato, Y., Nabeta, Y., Tsukahara, T., Hirohashi, Y., Syunsui, R., Maeda, A., Sahara, H., Ikeda, H., Torigoe, T., Ichimiya, S., et al. (2002). Detection and induction of CTLs specific for SYT-SSX-derived peptides in HLA-A24(+) patients with synovial sarcoma. J. Immunol. 169, 1611-1618. https://doi.org/10.4049/jimmunol.169.3.1611
- Saxena, M., van der Burg, S.H., Melief, C.J.M., and Bhardwaj, N. (2021). Therapeutic cancer vaccines. Nat. Rev. Cancer 21, 360-378. https://doi.org/10.1038/s41568-021-00346-0
- Siegel, R.L., Miller, K.D., Fuchs, H.E., and Jemal, A. (2022). Cancer statistics, 2022. CA Cancer J. Clin. 72, 7-33. https://doi.org/10.3322/caac.21708
- Smolle, M.A., Herbsthofer, L., Granegger, B., Goda, M., Brcic, I., Bergovec, M., Scheipl, S., Prietl, B., Pichler, M., Gerger, A., et al. (2021). T-regulatory cells predict clinical outcome in soft tissue sarcoma patients: a clinic-pathological study. Br. J. Cancer 125, 717-724. https://doi.org/10.1038/s41416-021-01456-0
- Somaiah, N., Conley, A.P., Parra, E.R., Lin, H., Amini, B., Solis Soto, L., Salazar, R., Barreto, C., Chen, H., Gite, S., et al. (2022). Durvalumab plus tremelimumab in advanced or metastatic soft tissue and bone sarcomas: a single-centre phase 2 trial. Lancet Oncol. 23, 1156-1166. https://doi.org/10.1016/S1470-2045(22)00392-8
- Squires, M.H., Ethun, C.G., Suarez-Kelly, L.P., Yu, P.Y., Hughes, T.M., Shelby, R.D., Tran, T.B., Poultsides, G., Charlson, J., Gamblin, T.C., et al. (2020). Trends in the use of adjuvant chemotherapy for high-grade truncal and extremity soft tissue sarcomas. J. Surg. Res. 245, 577-586. https://doi.org/10.1016/j.jss.2019.08.002
- Strickler, J.H., Hanks, B.A., and Khasraw, M. (2021). Tumor mutational burden as a predictor of immunotherapy response: is more always better? Clin. Cancer Res. 27, 1236-1241. https://doi.org/10.1158/1078-0432.CCR-20-3054
- Tagliamonte, M., Petrizzo, A., Tornesello, M.L., Buonaguro, F.M., and Buonaguro, L. (2014). Antigen-specific vaccines for cancer treatment. Hum. Vaccin. Immunother. 10, 3332-3346. https://doi.org/10.4161/21645515.2014.973317
- Tan, S., Li, D., and Zhu, X. (2020). Cancer immunotherapy: pros, cons and beyond. Biomed. Pharmacother. 124, 109821.
- Tang, F., Tie, Y., Wei, Y.Q., Tu, C.Q., and Wei, X.W. (2021). Targeted and immuno-based therapies in sarcoma: mechanisms and advances in clinical trials. Biochim. Biophys. Acta Rev. Cancer 1876, 188606.
- Tawbi, H.A., Burgess, M., Bolejack, V., Van Tine, B.A., Schuetze, S.M., Hu, J., D'Angelo, S., Attia, S., Riedel, R.F., Priebat, D.A., et al. (2017). Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 18, 1493-1501. https://doi.org/10.1016/S1470-2045(17)30624-1
- Thorkildsen, J., Norum, O.J., Myklebust, T.A., and Zaikova, O. (2021). Chondrosarcoma local recurrence in the Cancer Registry of Norway cohort (1990-2013): patterns and impact. J. Surg. Oncol. 123, 510-520. https://doi.org/10.1002/jso.26308
- Tsagozis, P., Augsten, M., Zhang, Y., Li, T., Hesla, A., Bergh, J., Haglund, F., Tobin, N.P., and Ehnman, M. (2019). An immunosuppressive macrophage profile attenuates the prognostic impact of CD20-positive B cells in human soft tissue sarcoma. Cancer Immunol. Immunother. 68, 927-936. https://doi.org/10.1007/s00262-019-02322-y
- Tu, B., Zhu, J., Liu, S., Wang, L., Fan, Q., Hao, Y., Fan, C., and Tang, T.T. (2016). Mesenchymal stem cells promote osteosarcoma cell survival and drug resistance through activation of STAT3. Oncotarget 7, 48296-48308. https://doi.org/10.18632/oncotarget.10219
- Turley, S.J., Cremasco, V., and Astarita, J.L. (2015). Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol. 15, 669-682. https://doi.org/10.1038/nri3902
- von Konow, A., Ghanei, I., Styring, E., and Vult von Steyern, F. (2021). Late local recurrence and metastasis in soft tissue sarcoma of the extremities and trunk wall: better outcome after treatment of late events compared with early. Ann. Surg. Oncol. 28, 7891-7902. https://doi.org/10.1245/s10434-021-09942-8
- Waldman, A.D., Fritz, J.M., and Lenardo, M.J. (2020). A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651-668. https://doi.org/10.1038/s41577-020-0306-5
- Weber, J. (2007). Review: anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist 12, 864-872. https://doi.org/10.1634/theoncologist.12-7-864
- Wei, R., Dean, D.C., Thanindratarn, P., Hornicek, F.J., Guo, W., and Duan, Z. (2020). Cancer testis antigens in sarcoma: expression, function and immunotherapeutic application. Cancer Lett. 479, 54-60. https://doi.org/10.1016/j.canlet.2019.10.024
- Weng, W., Yu, L., Li, Z., Tan, C., Lv, J., Lao, I.W., Hu, W., Deng, Z., Liu, Z., Wang, J., et al. (2022). The immune subtypes and landscape of sarcomas. BMC Immunol. 23, 46.
- Whitehurst, A.W. (2014). Cause and consequence of cancer/testis antigen activation in cancer. Annu. Rev. Pharmacol. Toxicol. 54, 251-272. https://doi.org/10.1146/annurev-pharmtox-011112-140326
- Xie, C., Whalley, N., Adasonla, K., Grimer, R., and Jeys, L. (2015). Can local recurrence of a sacral chordoma be treated by further surgery? Bone Joint J. 97-B, 711-715.
- Xie, L., Yang, Y., Guo, W., Che, D., Xu, J., Sun, X., Liu, K., Ren, T., Liu, X., Yang, Y., et al. (2021). The clinical implications of tumor mutational burden in osteosarcoma. Front. Oncol. 10, 595527.
- Yan, M., Schwaederle, M., Arguello, D., Millis, S.Z., Gatalica, Z., and Kurzrock, R. (2015). HER2 expression status in diverse cancers: review of results from 37,992 patients. Cancer Metastasis Rev. 34, 157-164. https://doi.org/10.1007/s10555-015-9552-6
- Yang, W., Lee, K.W., Srivastava, R.M., Kuo, F., Krishna, C., Chowell, D., Makarov, V., Hoen, D., Dalin, M.G., Wexler, L., et al. (2019). Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat. Med. 25, 767-775. https://doi.org/10.1038/s41591-019-0434-2
- Zamarin, D., Hamid, O., Nayak-Kapoor, A., Sahebjam, S., Sznol, M., Collaku, A., Fox, F.E., Marshall, M.A., and Hong, D.S. (2020). Mogamulizumab in combination with durvalumab or tremelimumab in patients with advanced solid tumors: a phase I study. Clin. Cancer Res. 26, 4531-4541. https://doi.org/10.1158/1078-0432.CCR-20-0328
- Zhang, H., Huang, W., Feng, Q., Sun, W., Yan, W., Wang, C., Zhang, J., Huang, K., Yu, L., Qu, X., et al. (2022). Clinical significance and risk factors of local recurrence in synovial sarcoma: a retrospective analysis of 171 cases. Front. Surg. 8, 736146.
- Zhang, Y. and Zhang, Z. (2020). The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 17, 807-821. https://doi.org/10.1038/s41423-020-0488-6
- Zhao, L. and Cao, Y.J. (2019). Engineered T cell therapy for cancer in the clinic. Front. Immunol. 10, 2250.
- Zhao, R., Yu, X., Feng, Y., Yang, Z., Chen, X., Wand, J., Ma, S., Zhang, Z., and Guo, X. (2018). Local recurrence is correlated with decreased overall survival in patients with intermediate high-grade localized primary soft tissue sarcoma of extremity and abdominothoracic wall. Asia Pac. J. Clin. Oncol. 14, e109-e115. https://doi.org/10.1111/ajco.12807
- Zheng, W., Xiao, H., Liu, H., and Zhou, Y. (2015). Expression of programmed death 1 is correlated with progression of osteosarcoma. APMIS 123, 102-107. https://doi.org/10.1111/apm.12311
- Zheng, Y., Wang, G., Chen, R., Hua, Y., and Cai, Z. (2018). Mesenchymal stem cells in the osteosarcoma microenvironment: their biological properties, influence on tumor growth, and therapeutic implications. Stem Cell Res. Ther. 9, 22.
- Zhou, Y., Yang, D., Yang, Q., Lv, X., Huang, W., Zhou, Z., Wang, Y., Zhang, Z., Yuan, T., Ding, X., et al. (2020). Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat. Commun. 11, 6322.
- Zhu, M.M.T., Shenasa, E., and Nielsen, T.O. (2020). Sarcomas: immune biomarker expression and checkpoint inhibitor trials. Cancer Treat. Rev. 91, 102115.
- Zitvogel, L., Tesniere, A., and Kroemer, G. (2006). Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat. Rev. Immunol. 6, 715-727. https://doi.org/10.1038/nri1936
- Zou, C., Shen, J., Tang, Q., Yang, Z., Yin, J., Li, Z., Xie, X., Huang, G., Lev, D., and Wang, J. (2012). Cancer-testis antigens expressed in osteosarcoma identified by gene microarray correlate with a poor patient prognosis. Cancer 118, 1845-1855. https://doi.org/10.1002/cncr.26486