DOI QR코드

DOI QR Code

Recombinant Human HAPLN1 Mitigates Pulmonary Emphysema by Increasing TGF-β Receptor I and Sirtuins Levels in Human Alveolar Epithelial Cells

  • Yongwei Piao (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • So Yoon Yun (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Zhicheng Fu (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Ji Min Jang (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Moon Jung Back (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Ha Hyung Kim (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Dae Kyong Kim (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University)
  • Received : 2023.06.08
  • Accepted : 2023.06.24
  • Published : 2023.09.30

Abstract

Chronic obstructive pulmonary disease (COPD) will be the third leading cause of death worldwide by 2030. One of its components, emphysema, has been defined as a lung disease that irreversibly damages the lungs' alveoli. Treatment is currently unavailable for emphysema symptoms and complete cure of the disease. Hyaluronan (HA) and proteoglycan link protein 1 (HAPLN1), an HA-binding protein linking HA in the extracellular matrix to stabilize the proteoglycan structure, forms a bulky hydrogel-like aggregate. Studies on the biological role of the full-length HAPLN1, a simple structure-stabilizing protein, are limited. Here, we demonstrated for the first time that treating human alveolar epithelial type 2 cells with recombinant human HAPLN1 (rhHAPLN1) increased TGF-β receptor 1 (TGF-β RI) protein levels, but not TGF-β RII, in a CD44-dependent manner with concurrent enhancement of the phosphorylated Smad3 (p-Smad3), but not p-Smad2, upon TGF-β1 stimulation. Furthermore, rhHAPLN1 significantly increased sirtuins levels (i.e., SIRT1/2/6) without TGF-β1 and inhibited acetylated p300 levels that were increased by TGF-β1. rhHAPLN1 is crucial in regulating cellular senescence, including p53, p21, and p16, and inflammation markers such as p-NF-κB and Nrf2. Both senile emphysema mouse model induced via intraperitoneal rhHAPLN1 injections and porcine pancreatic elastase (PPE)-induced COPD mouse model generated via rhHAPLN1-containing aerosols inhalations showed a significantly potent efficacy in reducing alveolar spaces enlargement. Preclinical trials are underway to investigate the effects of inhaled rhHAPLN1-containing aerosols on several COPD animal models.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea grant (NRF-2017M3A9D8048414) funded by the Korean Government (Ministry of Science and ICT). We thank Dr. Eui Man Jeong (College of Pharmacy, Jeju National University, Republic of Korea) for discussion and interpretation on reactive oxygen species.

References

  1. Ahmad, S.M.S., Al-Mansoob, M., and Ouhtit, A. (2022). SIRT1, a novel transcriptional downstream target of CD44, linking its deacetylase activity to tumor cell invasion/metastasis. Front. Oncol. 12, 1038121.
  2. Baker, J.R., Vuppusetty, C., Colley, T., Papaioannou, A.I., Fenwick, P., Donnelly, L., Ito, K., and Barnes, P.J. (2016). Oxidative stress dependent microRNA-34a activation via PI3Kalpha reduces the expression of sirtuin-1 and sirtuin-6 in epithelial cells. Sci. Rep. 6, 35871.
  3. Barkauskas, C.E., Cronce, M.J., Rackley, C.R., Bowie, E.J., Keene, D.R., Stripp, B.R., Randell, S.H., Noble, P.W., and Hogan, B.L. (2013). Type 2 alveolar cells are stem cells in adult lung. J. Clin. Invest. 123, 3025-3036. https://doi.org/10.1172/JCI68782
  4. Barnes, P.J. (2017). Senescence in COPD and its comorbidities. Annu. Rev. Physiol. 79, 517-539. https://doi.org/10.1146/annurev-physiol-022516-034314
  5. Batchelder, E.M. and Yarar, D. (2010). Differential requirements for clathrin-dependent endocytosis at sites of cell-substrate adhesion. Mol. Biol. Cell 21, 3070-3079. https://doi.org/10.1091/mbc.e09-12-1044
  6. Bhattacharyya, S., Ghosh, A.K., Pannu, J., Mori, Y., Takagawa, S., Chen, G., Trojanowska, M., Gilliam, A.C., and Varga, J. (2005). Fibroblast expression of the coactivator p300 governs the intensity of profibrotic response to transforming growth factor beta. Arthritis Rheum. 52, 1248-1258. https://doi.org/10.1002/art.20996
  7. Bouras, T., Fu, M., Sauve, A.A., Wang, F., Quong, A.A., Perkins, N.D., Hay, R.T., Gu, W., and Pestell, R.G. (2005). SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J. Biol. Chem. 280, 10264-10276. https://doi.org/10.1074/jbc.M408748200
  8. Bourguignon, L.Y., Singleton, P.A., Zhu, H., and Zhou, B. (2002). Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor beta receptor I in metastatic breast tumor cells. J. Biol. Chem. 277, 39703-39712. https://doi.org/10.1074/jbc.M204320200
  9. Bourguignon, L.Y.W., Xia, W., and Wong, G. (2009). Hyaluronan-mediated CD44 interaction with p300 and SIRT1 regulates beta-catenin signaling and NFkappaB-specific transcription activity leading to MDR1 and Bcl-xL gene expression and chemoresistance in breast tumor cells. J. Biol. Chem. 284, 2657-2671. https://doi.org/10.1074/jbc.M806708200
  10. Buckley, S., Shi, W., Barsky, L., and Warburton, D. (2008). TGF-beta signaling promotes survival and repair in rat alveolar epithelial type 2 cells during recovery after hyperoxic injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L739-L748. https://doi.org/10.1152/ajplung.00294.2007
  11. Buckwalter, J.A., Rosenberg, L.C., and Tang, L.H. (1984). The effect of link protein on proteoglycan aggregate structure. An electron microscopic study of the molecular architecture and dimensions of proteoglycan aggregates reassembled from the proteoglycan monomers and link proteins of bovine fetal epiphyseal cartilage. J. Biol. Chem. 259, 5361-5363. https://doi.org/10.1016/S0021-9258(18)91012-4
  12. Calvanese, V., Lara, E., Suarez-Alvarez, B., Abu Dawud, R., Vazquez-Chantada, M., Martinez-Chantar, M.L., Embade, N., Lopez-Nieva, P., Horrillo, A., Hmadcha, A., et al. (2010). Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proc. Natl. Acad. Sci. U. S. A. 107, 13736-13741. https://doi.org/10.1073/pnas.1001399107
  13. Cantor, J.O., Cerreta, J.M., Ochoa, M., Ma, S., Chow, T., Grunig, G., and Turino, G.M. (2005). Aerosolized hyaluronan limits airspace enlargement in a mouse model of cigarette smoke-induced pulmonary emphysema. Exp. Lung Res. 31, 417-430. https://doi.org/10.1080/01902140590918669
  14. Cantor, J.O., Cerreta, J.M., Ochoa, M., Ma, S., Liu, M., and Turino, G.M. (2011). Therapeutic effects of hyaluronan on smoke-induced elastic fiber injury: does delayed treatment affect efficacy? Lung 189, 51-56. https://doi.org/10.1007/s00408-010-9271-2
  15. Chen, H., Sun, J., Buckley, S., Chen, C., Warburton, D., Wang, X.F., and Shi, W. (2005). Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema. Am. J. Physiol. Lung Cell. Mol. Physiol. 288, L683-L691. https://doi.org/10.1152/ajplung.00298.2004
  16. Isacke, C.M. and Yarwood, H. (2002). The hyaluronan receptor, CD44. Int. J. Biochem. Cell Biol. 34, 718-721. https://doi.org/10.1016/S1357-2725(01)00166-2
  17. Cuadrado, A., Rojo, A.I., Wells, G., Hayes, J.D., Cousin, S.P., Rumsey, W.L., Attucks, O.C., Franklin, S., Levonen, A.L., Kensler, T.W., et al. (2019). Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18, 295-317. https://doi.org/10.1038/s41573-018-0008-x
  18. D'Onofrio, N., Servillo, L., and Balestrieri, M.L. (2018). SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxid. Redox Signal. 28, 711-732. https://doi.org/10.1089/ars.2017.7178
  19. Danielson, B.T., Knudson, C.B., and Knudson, W. (2015). Extracellular processing of the cartilage proteoglycan aggregate and its effect on CD44-mediated internalization of hyaluronan. J. Biol. Chem. 290, 9555-9570. https://doi.org/10.1074/jbc.M115.643171
  20. Day, A.J. and de la Motte, C.A. (2005). Hyaluronan cross-linking: a protective mechanism in inflammation? Trends Immunol. 26, 637-643. https://doi.org/10.1016/j.it.2005.09.009
  21. Desai, T.J., Brownfield, D.G., and Krasnow, M.A. (2014). Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507, 190-194. https://doi.org/10.1038/nature12930
  22. Garantziotis, S. and Savani, R.C. (2019). Hyaluronan biology: a complex balancing act of structure, function, location and context. Matrix Biol. 78-79, 1-10. https://doi.org/10.1016/j.matbio.2019.02.002
  23. Harada, H. and Takahashi, M. (2007). CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2. J. Biol. Chem. 282, 5597-5607. https://doi.org/10.1074/jbc.M608358200
  24. Harman, D. (2006). Free radical theory of aging: an update: increasing the functional life span. Ann. N. Y. Acad. Sci. 1067, 10-21. https://doi.org/10.1196/annals.1354.003
  25. Hou, H.H., Cheng, S.L., Liu, H.T., Yang, F.Z., Wang, H.C., and Yu, C.J. (2013). Elastase induced lung epithelial cell apoptosis and emphysema through placenta growth factor. Cell Death Dis. 4, e793.
  26. Ito, K. and Barnes, P.J. (2009). COPD as a disease of accelerated lung aging. Chest 135, 173-180. https://doi.org/10.1378/chest.08-1419
  27. Jain, R., Barkauskas, C.E., Takeda, N., Bowie, E.J., Aghajanian, H., Wang, Q., Padmanabhan, A., Manderfield, L.J., Gupta, M., Li, D., et al. (2015). Plasticity of Hopx(+) type I alveolar cells to regenerate type II cells in the lung. Nat. Commun. 6, 6727.
  28. Jiang, D., Liang, J., Fan, J., Yu, S., Chen, S., Luo, Y., Prestwich, G.D., Mascarenhas, M.M., Garg, H.G., Quinn, D.A., et al. (2005). Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat. Med. 11, 1173-1179. https://doi.org/10.1038/nm1315
  29. Kato, R., Mizuno, S., Kadowaki, M., Shiozaki, K., Akai, M., Nakagawa, K., Oikawa, T., Iguchi, M., Osanai, K., Ishizaki, T., et al. (2016). Sirt1 expression is associated with CD31 expression in blood cells from patients with chronic obstructive pulmonary disease. Respir. Res. 17, 139.
  30. Khedoe, P.P., Wong, M.C., Wagenaar, G.T., Plomp, J.J., van Eck, M., Havekes, L.M., Rensen, P.C., Hiemstra, P.S., and Berbee, J.F. (2013). The effect of PPE-induced emphysema and chronic LPS-induced pulmonary inflammation on atherosclerosis development in APOE*3-LEIDEN mice. PLoS One 8, e80196.
  31. Kim, H.S., Xiao, C., Wang, R.H., Lahusen, T., Xu, X., Vassilopoulos, A., Vazquez-Ortiz, G., Jeong, W.I., Park, O., Ki, S.H., et al. (2010). Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 12, 224-236. https://doi.org/10.1016/j.cmet.2010.06.009
  32. Kirkil, G., Hamdi Muz, M., Seckin, D., Sahin, K., and Kucuk, O. (2008). Antioxidant effect of zinc picolinate in patients with chronic obstructive pulmonary disease. Respir. Med. 102, 840-844. https://doi.org/10.1016/j.rmed.2008.01.010
  33. Koga, T., Suico, M.A., Shimasaki, S., Watanabe, E., Kai, Y., Koyama, K., Omachi, K., Morino-Koga, S., Sato, T., Shuto, T., et al. (2015). Endoplasmic reticulum (ER) stress induces sirtuin 1 (SIRT1) expression via the PI3K-AktGSK3beta signaling pathway and promotes hepatocellular injury. J. Biol. Chem. 290, 30366-30374. https://doi.org/10.1074/jbc.M115.664169
  34. Konigshoff, M., Kneidinger, N., and Eickelberg, O. (2009). TGF-beta signaling in COPD: deciphering genetic and cellular susceptibilities for future therapeutic regimens. Swiss Med. Wkly. 139, 554-563.
  35. Lee, J.A., Kwon, Y.W., Kim, H.R., Shin, N., Son, H.J., Cheong, C.S., Kim, D.J., and Hwang, O. (2022). A novel pyrazolo[3,4-d]pyrimidine induces heme oxygenase-1 and exerts anti-inflammatory and neuroprotective effects. Mol. Cells 45, 134-147. https://doi.org/10.14348/molcells.2021.0074
  36. Lee, S.U., Kim, M.O., Kang, M.J., Oh, E.S., Ro, H., Lee, R.W., Song, Y.N., Jung, S., Lee, J.W., Lee, S.Y., et al. (2021). Transforming growth factor beta inhibits MUC5AC expression by Smad3/HDAC2 complex formation and NF-kappaB deacetylation at K310 in NCI-H292 cells. Mol. Cells 44, 38-49. https://doi.org/10.14348/molcells.2020.0188
  37. Liang, G.B. and He, Z.H. (2019). Animal models of emphysema. Chin. Med. J. (Engl.) 132, 2465-2475. https://doi.org/10.1097/CM9.0000000000000469
  38. Lin, W., Shen, G.X., Yuan, X.L., Jain, M.R., Yu, S.W., Zhang, A.H., Chen, J.D., and Kong, A.N.T. (2006). Regulation of Nrf2 transactivation domain activity by p160 RAC3/SRC3 and other nuclear co-regulators. J. Biochem. Mol. Biol. 39, 304-310. https://doi.org/10.5483/BMBRep.2006.39.3.304
  39. Liu, R., Hao, D., Xu, W., Li, J., Li, X., Shen, D., Sheng, K., Zhao, L., Xu, W., Gao, Z., et al. (2019). beta-Sitosterol modulates macrophage polarization and attenuates rheumatoid inflammation in mice. Pharm. Biol. 57, 161-168. https://doi.org/10.1080/13880209.2019.1577461
  40. Mebratu, Y.A., Smith, K.R., Agga, G.E., and Tesfaigzi, Y. (2016). Inflammation and emphysema in cigarette smoke-exposed mice when instilled with poly (I:C) or infected with influenza A or respiratory syncytial viruses. Respir. Res. 17, 75.
  41. Mercado, N., Ito, K., and Barnes, P.J. (2015). Accelerated ageing of the lung in COPD: new concepts. Thorax 70, 482-489. https://doi.org/10.1136/thoraxjnl-2014-206084
  42. Misra, S., Hascall, V.C., Markwald, R.R., and Ghatak, S. (2015). Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front. Immunol. 6, 201.
  43. Murray, C.J. and Lopez, A.D. (2013). Measuring the global burden of disease. N. Engl. J. Med. 369, 448-457. https://doi.org/10.1056/NEJMra1201534
  44. Nakamaru, Y., Vuppusetty, C., Wada, H., Milne, J.C., Ito, M., Rossios, C., Elliot, M., Hogg, J., Kharitonov, S., Goto, H., et al. (2009). A protein deacetylase SIRT1 is a negative regulator of metalloproteinase-9. FASEB J. 23, 2810-2819. https://doi.org/10.1096/fj.08-125468
  45. Ouhtit, A., Gaur, R.L., Abdraboh, M., Ireland, S.K., Rao, P.N., Raj, S.G., Al-Riyami, H., Shanmuganathan, S., Gupta, I., Murthy, S.N., et al. (2013). Simultaneous inhibition of cell-cycle, proliferation, survival, metastatic pathways and induction of apoptosis in breast cancer cells by a phytochemical super-cocktail: genes that underpin its mode of action. J. Cancer 4, 703-715. https://doi.org/10.7150/jca.7235
  46. Paschalaki, K.E., Starke, R.D., Hu, Y., Mercado, N., Margariti, A., Gorgoulis, V.G., Randi, A.M., and Barnes, P.J. (2013). Dysfunction of endothelial progenitor cells from smokers and chronic obstructive pulmonary disease patients due to increased DNA damage and senescence. Stem Cells 31, 2813-2826. https://doi.org/10.1002/stem.1488
  47. Patel, B.D., Loo, W.J., Tasker, A.D., Screaton, N.J., Burrows, N.P., Silverman, E.K., and Lomas, D.A. (2006). Smoking related COPD and facial wrinkling: is there a common susceptibility? Thorax 61, 568-671. https://doi.org/10.1136/thx.2005.053827
  48. Preibisch, S., Saalfeld, S., and Tomancak, P. (2009). Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463-1465. https://doi.org/10.1093/bioinformatics/btp184
  49. Rahman, I., Kinnula, V.L., Gorbunova, V., and Yao, H. (2012). SIRT1 as a therapeutic target in inflammaging of the pulmonary disease. Prev. Med. 54 Suppl, S20-S28. https://doi.org/10.1016/j.ypmed.2011.11.014
  50. Rajendrasozhan, S., Yang, S.R., Kinnula, V.L., and Rahman, I. (2008). SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 177, 861-870. https://doi.org/10.1164/rccm.200708-1269OC
  51. Rodriguez-Castillo, J.A., Perez, D.B., Ntokou, A., Seeger, W., Morty, R.E., and Ahlbrecht, K. (2018). Understanding alveolarization to induce lung regeneration. Respir. Res. 19, 148.
  52. Roughley, P.J., Poole, A.R., and Mort, J.S. (1982). The heterogeneity of link proteins isolated from human articular cartilage proteoglycan aggregates. J. Biol. Chem. 257, 11908-11914. https://doi.org/10.1016/S0021-9258(18)33652-4
  53. Sarker, R.S., John-Schuster, G., Bohla, A., Mutze, K., Burgstaller, G., Bedford, M.T., Konigshoff, M., Eickelberg, O., and Yildirim, A.O. (2015). Coactivator-associated arginine methyltransferase-1 function in alveolar epithelial senescence and elastase-induced emphysema susceptibility. Am. J. Respir. Cell Mol. Biol. 53, 769-781. https://doi.org/10.1165/rcmb.2014-0216OC
  54. Sarker, R.S.J., Conlon, T.M., Morrone, C., Srivastava, B., Konyalilar, N., Verleden, S.E., Bayram, H., Fehrenbach, H., and Yildirim, A.O. (2019). CARM1 regulates senescence during airway epithelial cell injury in COPD pathogenesis. Am. J. Physiol. Lung Cell. Mol. Physiol. 317, L602-L614. https://doi.org/10.1152/ajplung.00441.2018
  55. Shi, W., Xu, J., and Warburton, D. (2009). Development, repair and fibrosis: what is common and why it matters. Respirology 14, 656-665. https://doi.org/10.1111/j.1440-1843.2009.01565.x
  56. Shimoyama, T., Kaneda, M., Yoshida, S., Michihara, S., Fujita, N., Han, L.K., and Takahashi, R. (2022). Ninjin'yoeito ameliorated PPE-induced pulmonary emphysema and anxiety/depressive-like behavior in aged C57BL/6J mice. Front. Pharmacol. 13, 970697.
  57. Sorokin, L. (2010). The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 10, 712-723. https://doi.org/10.1038/nri2852
  58. Takasugi, M., Firsanov, D., Tombline, G., Ning, H., Ablaeva, J., Seluanov, A., and Gorbunova, V. (2020). Naked mole-rat very-high-molecular-mass hyaluronan exhibits superior cytoprotective properties. Nat. Commun. 11, 2376.
  59. Vomund, S., Schafer, A., Parnham, M.J., Brune, B., and von Knethen, A. (2017). Nrf2, the master regulator of anti-oxidative responses. Int. J. Mol. Sci. 18, 2772.
  60. Warburton, D., Shi, W., and Xu, B. (2013). TGF-beta-Smad3 signaling in emphysema and pulmonary fibrosis: an epigenetic aberration of normal development? Am. J. Physiol. Lung Cell. Mol. Physiol. 304, L83-L85. https://doi.org/10.1152/ajplung.00258.2012
  61. Xu, B., Chen, H., Xu, W., Zhang, W., Buckley, S., Zheng, S.G., Warburton, D., Kolb, M., Gauldie, J., and Shi, W. (2012). Molecular mechanisms of MMP9 overexpression and its role in emphysema pathogenesis of Smad3-deficient mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 303, L89-L96. https://doi.org/10.1152/ajplung.00060.2012
  62. Yanagisawa, S., Papaioannou, A.I., Papaporfyriou, A., Baker, J.R., Vuppusetty, C., Loukides, S., Barnes, P.J., and Ito, K. (2017). Decreased serum sirtuin-1 in COPD. Chest 152, 343-352. https://doi.org/10.1016/j.chest.2017.05.004
  63. Yao, H., Chung, S., Hwang, J.W., Rajendrasozhan, S., Sundar, I.K., Dean, D.A., McBurney, M.W., Guarente, L., Gu, W., Ronty, M., et al. (2012). SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J. Clin. Invest. 122, 2032-2045. https://doi.org/10.1172/JCI60132
  64. Yi, J. and Luo, J. (2010). SIRT1 and p53, effect on cancer, senescence and beyond. Biochim. Biophys. Acta 1804, 1684-1689. https://doi.org/10.1016/j.bbapap.2010.05.002
  65. Yu, M., Zhang, H., Wang, B., Zhang, Y., Zheng, X., Shao, B., Zhuge, Q., and Jin, K. (2021). Key signaling pathways in aging and potential interventions for healthy aging. Cells 10, 660.
  66. Zhang, M., An, C., Gao, Y., Leak, R.K., Chen, J., and Zhang, F. (2013). Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog. Neurobiol. 100, 30-47. https://doi.org/10.1016/j.pneurobio.2012.09.003
  67. Zhu, R., Wang, S.C., Sun, C., Tao, Y., Piao, H.L., Wang, X.Q., Du, M.R., and Li, D.J. (2013). Hyaluronan-CD44 interaction promotes growth of decidual stromal cells in human first-trimester pregnancy. PLoS One 8, e74812.
  68. Zhu, R.Z., Li, B.S., Gao, S.S., Seo, J.H., and Choi, B.M. (2021). Luteolin inhibits H(2)O(2)-induced cellular senescence via modulation of SIRT1 and p53. Korean J. Physiol. Pharmacol. 25, 297-305. https://doi.org/10.4196/kjpp.2021.25.4.297