Acknowledgement
This research was supported by the National Research Foundation (NRF) grant funded by the Korea government (MSIT and MOE, grant Nos. NRF-2020R1A2C1102124 and 2019R1A6A1A10072987, respectively).
References
- Ahn, K.H., Kim, S.K., Choi, J.M., Jung, S.Y., Won, J.H., Back, M.J., Fu, Z., Jang, J.M., Ha, H.C., and Kim, D.K. (2013). Identification of heat shock protein 60 as a regulator of neutral sphingomyelinase 2 and its role in dopamine uptake. PLoS One 8, e67216.
- Backes, S. and Herrmann, J.M. (2017). Protein translocation into the intermembrane space and matrix of mitochondria: mechanisms and driving forces. Front. Mol. Biosci. 4, 83.
- Birbes, H., El Bawab, S., Hannun, Y.A., and Obeid, L.M. (2001). Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J. 15, 2669-2679. https://doi.org/10.1096/fj.01-0539com
- Bligh, E.G. and Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911-917. https://doi.org/10.1139/y59-099
- Brady, R.O., Kanfer, J.N., Mock, M.B., and Fredrickson, D.S. (1966). The metabolism of sphingomyelin. II. Evidence of an enzymatic deficiency in Niemann-Pick diseae. Proc. Natl. Acad. Sci. U. S. A. 55, 366-369. https://doi.org/10.1073/pnas.55.2.366
- Colombini, M. (2010). Ceramide channels and their role in mitochondria-mediated apoptosis. Biochim. Biophys. Acta 1797, 1239-1244. https://doi.org/10.1016/j.bbabio.2010.01.021
- Cortese, J.D., Voglino, A.L., and Hackenbrock, C.R. (1991). Ionic strength of the intermembrane space of intact mitochondria as estimated with fluorescein-BSA delivered by low pH fusion. J. Cell Biol. 113, 1331-1340. https://doi.org/10.1083/jcb.113.6.1331
- Fernandez, J., Gharahdaghi, F., and Mische, S.M. (1998). Routine identification of proteins from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels or polyvinyl difluoride membranes using matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Electrophoresis 19, 1036-1045. https://doi.org/10.1002/elps.1150190619
- Galadari, S., Rahman, A., Pallichankandy, S., and Thayyullathil, F. (2015). Tumor suppressive functions of ceramide: evidence and mechanisms. Apoptosis 20, 689-711. https://doi.org/10.1007/s10495-015-1109-1
- Ganesan, V. and Colombini, M. (2010). Regulation of ceramide channels by Bcl-2 family proteins. FEBS Lett. 584, 2128-2134. https://doi.org/10.1016/j.febslet.2010.02.032
- Hannun, Y.A. and Obeid, L.M. (2018). Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 175-191. https://doi.org/10.1038/nrm.2017.107
- Kim, S., Han, J., Ahn, Y.H., Ha, C.H., Hwang, J.J., Lee, S.E., Kim, J.J., and Kim, N. (2022). Protective role of miR-34c in hypoxia by activating autophagy through BCL2 repression. Mol. Cells 45, 403-412. https://doi.org/10.14348/molcells.2022.2010
- Lee, D.H., Kim, S.H., Ahn, K.H., Kim, S.K., Choi, J.M., Ji, J.E., Won, J.H., Park, Y.H., Lim, C., Kim, S., et al. (2011). Identification and evaluation of neutral sphingomyelinase 2 inhibitors. Arch. Pharm. Res. 34, 229-236. https://doi.org/10.1007/s12272-011-0208-y
- Lee, J., Lee, S., Min, S., and Kang, S.W. (2022). RIP3-dependent accumulation of mitochondrial superoxide anions in TNF-alpha-induced necroptosis. Mol. Cells 45, 193-201. https://doi.org/10.14348/molcells.2021.0260
- Luberto, C., Hassler, D.F., Signorelli, P., Okamoto, Y., Sawai, H., Boros, E., Hazen-Martin, D.J., Obeid, L.M., Hannun, Y.A., and Smith, G.K. (2002). Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J. Biol. Chem. 277, 41128-41139. https://doi.org/10.1074/jbc.M206747200
- Maier, J.A.M., Locatelli, L., Fedele, G., Cazzaniga, A., and Mazur, A. (2022). Magnesium and the brain: a focus on neuroinflammation and neurodegeneration. Int. J. Mol. Sci. 24, 223.
- Marchesini, N., Luberto, C., and Hannun, Y.A. (2003). Biochemical properties of mammalian neutral sphingomyelinase 2 and its role in sphingolipid metabolism. J. Biol. Chem. 278, 13775-13783. https://doi.org/10.1074/jbc.M212262200
- Masamune, A., Igarashi, Y., and Hakomori, S. (1996). Regulatory role of ceramide in interleukin (IL)-1 beta-induced E-selectin expression in human umbilical vein endothelial cells. Ceramide enhances IL-1 beta action, but is not sufficient for E-selectin expression. J. Biol. Chem. 271, 9368-9375. https://doi.org/10.1074/jbc.271.16.9368
- Menck, K., Sonmezer, C., Worst, T.S., Schulz, M., Dihazi, G.H., Streit, F., Erdmann, G., Kling, S., Boutros, M., Binder, C., et al. (2017). Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane. J. Extracell. Vesicles 6, 1378056.
- Novgorodov, S.A., Szulc, Z.M., Luberto, C., Jones, J.A., Bielawski, J., Bielawska, A., Hannun, Y.A., and Obeid, L.M. (2005). Positively charged ceramide is a potent inducer of mitochondrial permeabilization. J. Biol. Chem. 280, 16096-16105. https://doi.org/10.1074/jbc.M411707200
- Obeid, L.M., Linardic, C.M., Karolak, L.A., and Hannun, Y.A. (1993). Programmed cell death induced by ceramide. Science 259, 1769-1771. https://doi.org/10.1126/science.8456305
- Okazaki, T., Bielawska, A., Domae, N., Bell, R.M., and Hannun, Y.A. (1994). Characteristics and partial purification of a novel cytosolic, magnesium-independent, neutral sphingomyelinase activated in the early signal transduction of 1 alpha,25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J. Biol. Chem. 269, 4070-4077. https://doi.org/10.1016/S0021-9258(17)41744-3
- Paris, F., Grassme, H., Cremesti, A., Zager, J., Fong, Y., Haimovitz-Friedman, A., Fuks, Z., Gulbins, E., and Kolesnick, R. (2001). Natural ceramide reverses Fas resistance of acid sphingomyelinase(-/-) hepatocytes. J. Biol. Chem. 276, 8297-8305. https://doi.org/10.1074/jbc.M008732200
- Porcelli, A.M., Ghelli, A., Zanna, C., Pinton, P., Rizzuto, R., and Rugolo, M. (2005). pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. Biochem. Biophys. Res. Commun. 326, 799-804. https://doi.org/10.1016/j.bbrc.2004.11.105
- Rajagopalan, V., Canals, D., Luberto, C., Snider, J., Voelkel-Johnson, C., Obeid, L.M., and Hannun, Y.A. (2015). Critical determinants of mitochondria-associated neutral sphingomyelinase (MA-nSMase) for mitochondrial localization. Biochim. Biophys. Acta 1850, 628-639. https://doi.org/10.1016/j.bbagen.2014.11.019
- Rardin, M.J., Taylor, G.S., and Dixon, J.E. (2009). Distinguishing mitochondrial inner membrane orientation of dual specific phosphatase 18 and 21. Methods Enzymol. 457, 275-287. https://doi.org/10.1016/S0076-6879(09)05015-0
- Samanta, S., Stiban, J., Maugel, T.K., and Colombini, M. (2011). Visualization of ceramide channels by transmission electron microscopy. Biochim. Biophys. Acta 1808, 1196-1201. https://doi.org/10.1016/j.bbamem.2011.01.007
- Sims, N.R. and Anderson, M.F. (2008). Isolation of mitochondria from rat brain using Percoll density gradient centrifugation. Nat. Protoc. 3, 1228-1239. https://doi.org/10.1038/nprot.2008.105
- Siskind, L.J., Kolesnick, R.N., and Colombini, M. (2006). Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations. Mitochondrion 6, 118-125. https://doi.org/10.1016/j.mito.2006.03.002
- Wiesner, D.A. and Dawson, G. (1996). Staurosporine induces programmed cell death in embryonic neurons and activation of the ceramide pathway. J. Neurochem. 66, 1418-1425. https://doi.org/10.1046/j.1471-4159.1996.66041418.x
- Wu, B.X., Clarke, C.J., and Hannun, Y.A. (2010a). Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses. Neuromolecular Med. 12, 320-330. https://doi.org/10.1007/s12017-010-8120-z
- Wu, B.X., Rajagopalan, V., Roddy, P.L., Clarke, C.J., and Hannun, Y.A. (2010b). Identification and characterization of murine mitochondria-associated neutral sphingomyelinase (MA-nSMase), the mammalian sphingomyelin phosphodiesterase 5. J. Biol. Chem. 285, 17993-18002. https://doi.org/10.1074/jbc.M110.102988
- Yamaguchi, S. and Suzuki, K. (1978). A novel magnesium-independent neutral sphingomyelinase associated with rat central nervous system meylin. J. Biol. Chem. 253, 4090-4092. https://doi.org/10.1016/S0021-9258(17)34686-0
- Yamanaka, R., Shindo, Y., and Oka, K. (2019). Magnesium is a key player in neuronal maturation and neuropathology. Int. J. Mol. Sci. 20, 3439.