DOI QR코드

DOI QR Code

Purification and Characterization of Mitochondrial Mg2+-Independent Sphingomyelinase from Rat Brain

  • Jong Min Choi (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Yongwei Piao (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Kyong Hoon Ahn (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Seok Kyun Kim (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Jong Hoon Won (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Jae Hong Lee (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Ji Min Jang (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • In Chul Shin (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Zhicheng Fu (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Sung Yun Jung (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Eui Man Jeong (Department of Pharmacy, College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University) ;
  • Dae Kyong Kim (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University)
  • Received : 2023.05.04
  • Accepted : 2023.05.16
  • Published : 2023.09.30

Abstract

Sphingomyelinase (SMase) catalyzes ceramide production from sphingomyelin. Ceramides are critical in cellular responses such as apoptosis. They enhance mitochondrial outer membrane permeabilization (MOMP) through self-assembly in the mitochondrial outer membrane to form channels that release cytochrome c from intermembrane space (IMS) into the cytosol, triggering caspase-9 activation. However, the SMase involved in MOMP is yet to be identified. Here, we identified a mitochondrial Mg2+-independent SMase (mt-iSMase) from rat brain, which was purified 6,130-fold using a Percoll gradient, pulled down with biotinylated sphingomyelin, and subjected to Mono Q anion exchange. A single peak of mt-iSMase activity was eluted at a molecular mass of approximately 65 kDa using Superose 6 gel filtration. The purified enzyme showed optimal activity at pH of 6.5 and was inhibited by dithiothreitol and Mg2+, Mn2+, Ni2+, Cu2+, Zn2+, Fe2+, and Fe3+ ions. It was also inhibited by GW4869, which is a non-competitive inhibitor of Mg2+-dependent neutral SMase 2 (encoded by SMPD3), that protects against cytochrome c release-mediated cell death. Subfractionation experiments showed that mt-iSMase localizes in the IMS of the mitochondria, implying that mt-iSMase may play a critical role in generating ceramides for MOMP, cytochrome c release, and apoptosis. These data suggest that the purified enzyme in this study is a novel SMase.

Keywords

Acknowledgement

This research was supported by the National Research Foundation (NRF) grant funded by the Korea government (MSIT and MOE, grant Nos. NRF-2020R1A2C1102124 and 2019R1A6A1A10072987, respectively).

References

  1. Ahn, K.H., Kim, S.K., Choi, J.M., Jung, S.Y., Won, J.H., Back, M.J., Fu, Z., Jang, J.M., Ha, H.C., and Kim, D.K. (2013). Identification of heat shock protein 60 as a regulator of neutral sphingomyelinase 2 and its role in dopamine uptake. PLoS One 8, e67216.
  2. Backes, S. and Herrmann, J.M. (2017). Protein translocation into the intermembrane space and matrix of mitochondria: mechanisms and driving forces. Front. Mol. Biosci. 4, 83.
  3. Birbes, H., El Bawab, S., Hannun, Y.A., and Obeid, L.M. (2001). Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J. 15, 2669-2679. https://doi.org/10.1096/fj.01-0539com
  4. Bligh, E.G. and Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911-917. https://doi.org/10.1139/y59-099
  5. Brady, R.O., Kanfer, J.N., Mock, M.B., and Fredrickson, D.S. (1966). The metabolism of sphingomyelin. II. Evidence of an enzymatic deficiency in Niemann-Pick diseae. Proc. Natl. Acad. Sci. U. S. A. 55, 366-369. https://doi.org/10.1073/pnas.55.2.366
  6. Colombini, M. (2010). Ceramide channels and their role in mitochondria-mediated apoptosis. Biochim. Biophys. Acta 1797, 1239-1244. https://doi.org/10.1016/j.bbabio.2010.01.021
  7. Cortese, J.D., Voglino, A.L., and Hackenbrock, C.R. (1991). Ionic strength of the intermembrane space of intact mitochondria as estimated with fluorescein-BSA delivered by low pH fusion. J. Cell Biol. 113, 1331-1340. https://doi.org/10.1083/jcb.113.6.1331
  8. Fernandez, J., Gharahdaghi, F., and Mische, S.M. (1998). Routine identification of proteins from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels or polyvinyl difluoride membranes using matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Electrophoresis 19, 1036-1045. https://doi.org/10.1002/elps.1150190619
  9. Galadari, S., Rahman, A., Pallichankandy, S., and Thayyullathil, F. (2015). Tumor suppressive functions of ceramide: evidence and mechanisms. Apoptosis 20, 689-711. https://doi.org/10.1007/s10495-015-1109-1
  10. Ganesan, V. and Colombini, M. (2010). Regulation of ceramide channels by Bcl-2 family proteins. FEBS Lett. 584, 2128-2134. https://doi.org/10.1016/j.febslet.2010.02.032
  11. Hannun, Y.A. and Obeid, L.M. (2018). Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 175-191. https://doi.org/10.1038/nrm.2017.107
  12. Kim, S., Han, J., Ahn, Y.H., Ha, C.H., Hwang, J.J., Lee, S.E., Kim, J.J., and Kim, N. (2022). Protective role of miR-34c in hypoxia by activating autophagy through BCL2 repression. Mol. Cells 45, 403-412. https://doi.org/10.14348/molcells.2022.2010
  13. Lee, D.H., Kim, S.H., Ahn, K.H., Kim, S.K., Choi, J.M., Ji, J.E., Won, J.H., Park, Y.H., Lim, C., Kim, S., et al. (2011). Identification and evaluation of neutral sphingomyelinase 2 inhibitors. Arch. Pharm. Res. 34, 229-236. https://doi.org/10.1007/s12272-011-0208-y
  14. Lee, J., Lee, S., Min, S., and Kang, S.W. (2022). RIP3-dependent accumulation of mitochondrial superoxide anions in TNF-alpha-induced necroptosis. Mol. Cells 45, 193-201. https://doi.org/10.14348/molcells.2021.0260
  15. Luberto, C., Hassler, D.F., Signorelli, P., Okamoto, Y., Sawai, H., Boros, E., Hazen-Martin, D.J., Obeid, L.M., Hannun, Y.A., and Smith, G.K. (2002). Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J. Biol. Chem. 277, 41128-41139. https://doi.org/10.1074/jbc.M206747200
  16. Maier, J.A.M., Locatelli, L., Fedele, G., Cazzaniga, A., and Mazur, A. (2022). Magnesium and the brain: a focus on neuroinflammation and neurodegeneration. Int. J. Mol. Sci. 24, 223.
  17. Marchesini, N., Luberto, C., and Hannun, Y.A. (2003). Biochemical properties of mammalian neutral sphingomyelinase 2 and its role in sphingolipid metabolism. J. Biol. Chem. 278, 13775-13783. https://doi.org/10.1074/jbc.M212262200
  18. Masamune, A., Igarashi, Y., and Hakomori, S. (1996). Regulatory role of ceramide in interleukin (IL)-1 beta-induced E-selectin expression in human umbilical vein endothelial cells. Ceramide enhances IL-1 beta action, but is not sufficient for E-selectin expression. J. Biol. Chem. 271, 9368-9375. https://doi.org/10.1074/jbc.271.16.9368
  19. Menck, K., Sonmezer, C., Worst, T.S., Schulz, M., Dihazi, G.H., Streit, F., Erdmann, G., Kling, S., Boutros, M., Binder, C., et al. (2017). Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane. J. Extracell. Vesicles 6, 1378056.
  20. Novgorodov, S.A., Szulc, Z.M., Luberto, C., Jones, J.A., Bielawski, J., Bielawska, A., Hannun, Y.A., and Obeid, L.M. (2005). Positively charged ceramide is a potent inducer of mitochondrial permeabilization. J. Biol. Chem. 280, 16096-16105. https://doi.org/10.1074/jbc.M411707200
  21. Obeid, L.M., Linardic, C.M., Karolak, L.A., and Hannun, Y.A. (1993). Programmed cell death induced by ceramide. Science 259, 1769-1771. https://doi.org/10.1126/science.8456305
  22. Okazaki, T., Bielawska, A., Domae, N., Bell, R.M., and Hannun, Y.A. (1994). Characteristics and partial purification of a novel cytosolic, magnesium-independent, neutral sphingomyelinase activated in the early signal transduction of 1 alpha,25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J. Biol. Chem. 269, 4070-4077. https://doi.org/10.1016/S0021-9258(17)41744-3
  23. Paris, F., Grassme, H., Cremesti, A., Zager, J., Fong, Y., Haimovitz-Friedman, A., Fuks, Z., Gulbins, E., and Kolesnick, R. (2001). Natural ceramide reverses Fas resistance of acid sphingomyelinase(-/-) hepatocytes. J. Biol. Chem. 276, 8297-8305. https://doi.org/10.1074/jbc.M008732200
  24. Porcelli, A.M., Ghelli, A., Zanna, C., Pinton, P., Rizzuto, R., and Rugolo, M. (2005). pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. Biochem. Biophys. Res. Commun. 326, 799-804. https://doi.org/10.1016/j.bbrc.2004.11.105
  25. Rajagopalan, V., Canals, D., Luberto, C., Snider, J., Voelkel-Johnson, C., Obeid, L.M., and Hannun, Y.A. (2015). Critical determinants of mitochondria-associated neutral sphingomyelinase (MA-nSMase) for mitochondrial localization. Biochim. Biophys. Acta 1850, 628-639. https://doi.org/10.1016/j.bbagen.2014.11.019
  26. Rardin, M.J., Taylor, G.S., and Dixon, J.E. (2009). Distinguishing mitochondrial inner membrane orientation of dual specific phosphatase 18 and 21. Methods Enzymol. 457, 275-287. https://doi.org/10.1016/S0076-6879(09)05015-0
  27. Samanta, S., Stiban, J., Maugel, T.K., and Colombini, M. (2011). Visualization of ceramide channels by transmission electron microscopy. Biochim. Biophys. Acta 1808, 1196-1201. https://doi.org/10.1016/j.bbamem.2011.01.007
  28. Sims, N.R. and Anderson, M.F. (2008). Isolation of mitochondria from rat brain using Percoll density gradient centrifugation. Nat. Protoc. 3, 1228-1239. https://doi.org/10.1038/nprot.2008.105
  29. Siskind, L.J., Kolesnick, R.N., and Colombini, M. (2006). Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations. Mitochondrion 6, 118-125. https://doi.org/10.1016/j.mito.2006.03.002
  30. Wiesner, D.A. and Dawson, G. (1996). Staurosporine induces programmed cell death in embryonic neurons and activation of the ceramide pathway. J. Neurochem. 66, 1418-1425. https://doi.org/10.1046/j.1471-4159.1996.66041418.x
  31. Wu, B.X., Clarke, C.J., and Hannun, Y.A. (2010a). Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses. Neuromolecular Med. 12, 320-330. https://doi.org/10.1007/s12017-010-8120-z
  32. Wu, B.X., Rajagopalan, V., Roddy, P.L., Clarke, C.J., and Hannun, Y.A. (2010b). Identification and characterization of murine mitochondria-associated neutral sphingomyelinase (MA-nSMase), the mammalian sphingomyelin phosphodiesterase 5. J. Biol. Chem. 285, 17993-18002. https://doi.org/10.1074/jbc.M110.102988
  33. Yamaguchi, S. and Suzuki, K. (1978). A novel magnesium-independent neutral sphingomyelinase associated with rat central nervous system meylin. J. Biol. Chem. 253, 4090-4092. https://doi.org/10.1016/S0021-9258(17)34686-0
  34. Yamanaka, R., Shindo, Y., and Oka, K. (2019). Magnesium is a key player in neuronal maturation and neuropathology. Int. J. Mol. Sci. 20, 3439.