DOI QR코드

DOI QR Code

Updates on the Immune Cell Basis of Hepatic Ischemia-Reperfusion Injury

  • Mi Jeong Heo (Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston) ;
  • Ji Ho Suh (Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston) ;
  • Kyle L. Poulsen (Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston) ;
  • Cynthia Ju (Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston) ;
  • Kang Ho Kim (Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston)
  • 투고 : 2023.06.15
  • 심사 : 2023.07.21
  • 발행 : 2023.09.30

초록

Liver ischemia-reperfusion injury (IRI) is the main cause of organ dysfunction and failure after liver surgeries including organ transplantation. The mechanism of liver IRI is complex and numerous signals are involved but cellular metabolic disturbances, oxidative stress, and inflammation are considered the major contributors to liver IRI. In addition, the activation of inflammatory signals exacerbates liver IRI by recruiting macrophages, dendritic cells, and neutrophils, and activating NK cells, NKT cells, and cytotoxic T cells. Technological advances enable us to understand the role of specific immune cells during liver IRI. Accordingly, therapeutic strategies to prevent or treat liver IRI have been proposed but no definitive and effective therapies exist yet. This review summarizes the current update on the immune cell functions and discusses therapeutic potentials in liver IRI. A better understanding of this complex and highly dynamic process may allow for the development of innovative therapeutic approaches and optimize patient outcomes.

키워드

과제정보

This work was supported by the NIH R01DK126656 (to K.H.K.), R00AA026648 (to K.L.P.), R01DK122796 (to C.J.), R01DK12330 (to C.J.), R01DK122708 (to C.J.). It was also funded by the American Heart Association Career Development Award 19CDA34660196 (to K.H.K.).

참고문헌

  1. Abu-Amara, M., Yang, S.Y., Tapuria, N., Fuller, B., Davidson, B., and Seifalian, A. (2010). Liver ischemia/reperfusion injury: processes in inflammatory networks--a review. Liver Transpl. 16, 1016-1032.  https://doi.org/10.1002/lt.22117
  2. Arrenberg, P., Maricic, I., and Kumar, V. (2011). Sulfatide-mediated activation of type II natural killer T cells prevents hepatic ischemic reperfusion injury in mice. Gastroenterology 140, 646-655.  https://doi.org/10.1053/j.gastro.2010.10.003
  3. Bandyopadhyay, K., Marrero, I., and Kumar, V. (2016). NKT cell subsets as key participants in liver physiology and pathology. Cell. Mol. Immunol. 13, 337-346.  https://doi.org/10.1038/cmi.2015.115
  4. Cai, J., Zhang, X., Chen, P., Li, Y., Liu, S., Liu, Q., Zhang, H., Wu, Z., Song, K., Liu, J., et al. (2022). The ER stress sensor inositol-requiring enzyme 1α in Kupffer cells promotes hepatic ischemia-reperfusion injury. J. Biol. Chem. 298, 101532. 
  5. Cao, Z., Yuan, Y., Jeyabalan, G., Du, Q., Tsung, A., Geller, D.A., and Billiar, T.R. (2009). Preactivation of NKT cells with alpha-GalCer protects against hepatic ischemia-reperfusion injury in mouse by a mechanism involving IL-13 and adenosine A2A receptor. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G249-G258.  https://doi.org/10.1152/ajpgi.00041.2009
  6. Castellaneta, A., Yoshida, O., Kimura, S., Yokota, S., Geller, D.A., Murase, N., and Thomson, A.W. (2014). Plasmacytoid dendritic cell-derived IFN-α promotes murine liver ischemia/reperfusion injury by induction of hepatocyte IRF-1. Hepatology 60, 267-277.  https://doi.org/10.1002/hep.27037
  7. Dar, W.A., Sullivan, E., Bynon, J.S., Eltzschig, H., and Ju, C. (2019). Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms. Liver Int. 39, 788-801.  https://doi.org/10.1111/liv.14091
  8. de Oliveira, T.H.C., Marques, P.E., Poosti, F., Ruytinx, P., Amaral, F.A., Brandolini, L., Allegretti, M., Proost, P., and Teixeira, M.M. (2018). Intravital microscopic evaluation of the effects of a CXCR2 antagonist in a model of liver ischemia reperfusion injury in mice. Front. Immunol. 8, 1917. 
  9. Dixon, L.J., Barnes, M., Tang, H., Pritchard, M.T., and Nagy, L.E. (2013). Kupffer cells in the liver. Compr. Physiol. 3, 785-797.  https://doi.org/10.1002/cphy.c120026
  10. Ellett, J.D., Atkinson, C., Evans, Z.P., Amani, Z., Balish, E., Schmidt, M.G., van Rooijen, N., Schnellmann, R.G., and Chavin, K.D. (2010). Murine Kupffer cells are protective in total hepatic ischemia/reperfusion injury with bowel congestion through IL-10. J. Immunol. 184, 5849-5858.  https://doi.org/10.4049/jimmunol.0902024
  11. Eltzschig, H.K. and Eckle, T. (2011). Ischemia and reperfusion--from mechanism to translation. Nat. Med. 17, 1391-1401.  https://doi.org/10.1038/nm.2507
  12. Fahrner, R., Trochsler, M., Corazza, N., Graubardt, N., Keogh, A., Candinas, D., Brunner, T., Stroka, D., and Beldi, G. (2014). Tumor necrosis factor-related apoptosis-inducing ligand on NK cells protects from hepatic ischemia-reperfusion injury. Transplantation 97, 1102-1109.  https://doi.org/10.1097/TP.0000000000000101
  13. Feng, M., Li, G., Qian, X., Fan, Y., Huang, X., Zhang, F., and Lu, L. (2012). IL-17A-producing NK cells were implicated in liver injury induced by ischemia and reperfusion. Int. Immunopharmacol. 13, 135-140.  https://doi.org/10.1016/j.intimp.2012.03.007
  14. Gan, X., Zhang, R., Gu, J., Ju, Z., Wu, X., Wang, Q., Peng, H., Qiu, J., Zhou, J., Cheng, F., et al. (2020). Acidic microenvironment regulates the severity of hepatic ischemia/reperfusion injury by modulating the generation and function of Tregs via the PI3K-mTOR pathway. Front. Immunol. 10, 2945. 
  15. Gao, B., Radaeva, S., and Park, O. (2009). Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J. Leukoc. Biol. 86, 513-528.  https://doi.org/10.1189/JLB.0309135
  16. Giolai, M., Verweij, W., Lister, A., Heavens, D., Macaulay, I., and Clark, M.D. (2019). Spatially resolved transcriptomics reveals plant host responses to pathogens. Plant Methods 15, 114. 
  17. Goto, T., Ito, Y., Satoh, M., Nakamoto, S., Nishizawa, N., Hosono, K., Naitoh, T., Eshima, K., Iwabuchi, K., Hiki, N., et al. (2021). Activation of iNKT cells facilitates liver repair after hepatic ischemia reperfusion injury through acceleration of macrophage polarization. Front. Immunol. 12, 754106. 
  18. Guillot, A. and Tacke, F. (2019). Liver macrophages: old dogmas and new insights. Hepatol. Commun. 3, 730-743.  https://doi.org/10.1002/hep4.1356
  19. He, J., Deng, C., Krall, L., and Shan, Z. (2023). ScRNA-seq and ST-seq in liver research. Cell Regen. 12, 11. 
  20. Hirao, H., Kojima, H., Dery, K.J., Nakamura, K., Kadono, K., Zhai, Y., Farmer, D.G., Kaldas, F.M., and Kupiec-Weglinski, J.W. (2023). Neutrophil CEACAM1 determines susceptibility to NETosis by regulating the S1PR2/S1PR3 axis in liver transplantation. J. Clin. Invest. 133, e162940. 
  21. Hirao, H., Nakamura, K., and Kupiec-Weglinski, J.W. (2022). Liver ischaemia-reperfusion injury: a new understanding of the role of innate immunity. Nat. Rev. Gastroenterol. Hepatol. 19, 239-256.  https://doi.org/10.1038/s41575-021-00549-8
  22. Honda, M., Takeichi, T., Hashimoto, S., Yoshii, D., Isono, K., Hayashida, S., Ohya, Y., Yamamoto, H., Sugawara, Y., and Inomata, Y. (2017). Intravital imaging of neutrophil recruitment reveals the efficacy of FPR1 blockade in hepatic ischemia-reperfusion injury. J. Immunol. 198, 1718-1728.  https://doi.org/10.4049/jimmunol.1601773
  23. Hsu, C.M., Wang, J.S., Liu, C.H., and Chen, L.W. (2002). Kupffer cells protect liver from ischemia-reperfusion injury by an inducible nitric oxide synthase-dependent mechanism. Shock 17, 280-285.  https://doi.org/10.1097/00024382-200204000-00007
  24. Huang, H., Tohme, S., Al-Khafaji, A.B., Tai, S., Loughran, P., Chen, L., Wang, S., Kim, J., Billiar, T., Wang, Y., et al. (2015). Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology 62, 600-614.  https://doi.org/10.1002/hep.27841
  25. Huang, M., Cai, H., Han, B., Xia, Y., Kong, X., and Gu, J. (2022). Natural killer cells in hepatic ischemia-reperfusion injury. Front. Immunol. 13, 870038. 
  26. Jaeschke, H. and Smith, C.W. (1997). Mechanisms of neutrophil-induced parenchymal cell injury. J. Leukoc. Biol. 61, 647-653.  https://doi.org/10.1002/jlb.61.6.647
  27. Jin, D., Lu, T., Ni, M., Wang, H., Zhang, J., Zhong, C., Shen, C., Hao, J., Busuttil, R.W., Kupiec-Weglinski, J.W., et al. (2020). Farnesoid X receptor activation protects liver from ischemia/reperfusion injury by up-regulating small heterodimer partner in Kupffer cells. Hepatol. Commun. 4, 540-554.  https://doi.org/10.1002/hep4.1478
  28. Kadono, K., Kageyama, S., Nakamura, K., Hirao, H., Ito, T., Kojima, H., Dery, K.J., Li, X., and Kupiec-Weglinski, J.W. (2022). Myeloid Ikaros-SIRT1 signaling axis regulates hepatic inflammation and pyroptosis in ischemia-stressed mouse and human liver. J. Hepatol. 76, 896-909.  https://doi.org/10.1016/j.jhep.2021.11.026
  29. Kageyama, S., Kadono, K., Hirao, H., Nakamura, K., Ito, T., Gjertson, D.W., Sosa, R.A., Reed, E.F., Kaldas, F.M., Busuttil, R.W., et al. (2021). Ischemia-reperfusion injury in allogeneic liver transplantation: a role of CD4 T cells in early allograft injury. Transplantation 105, 1989-1997.  https://doi.org/10.1097/TP.0000000000003488
  30. Kaltenmeier, C., Wang, R., Popp, B., Geller, D., Tohme, S., and Yazdani, H.O. (2022). Role of immuno-inflammatory signals in liver ischemia-reperfusion injury. Cells 11, 2222. 
  31. Kaplan, M.J. and Radic, M. (2012). Neutrophil extracellular traps: double-edged swords of innate immunity. J. Immunol. 189, 2689-2695.  https://doi.org/10.4049/jimmunol.1201719
  32. Khandoga, A., Hanschen, M., Kessler, J.S., and Krombach, F. (2006). CD4+ T cells contribute to postischemic liver injury in mice by interacting with sinusoidal endothelium and platelets. Hepatology 43, 306-315.  https://doi.org/10.1002/hep.21017
  33. Kim, H.Y., Kim, S.J., and Lee, S.M. (2015). Activation of NLRP3 and AIM2 inflammasomes in Kupffer cells in hepatic ischemia/reperfusion. FEBS J. 282, 259-270.  https://doi.org/10.1111/febs.13123
  34. Kobayashi, T., Hirano, K., Yamamoto, T., Hasegawa, G., Hatakeyama, K., Suematsu, M., and Naito, M. (2002). The protective role of Kupffer cells in the ischemia-reperfused rat liver. Arch. Histol. Cytol. 65, 251-261.  https://doi.org/10.1679/aohc.65.251
  35. Kojima, H., Kadono, K., Hirao, H., Dery, K.J., and Kupiec-Weglinski, J.W. (2023). CD4(+) T cell NRF2 signaling improves liver transplantation outcomes by modulating T cell activation and differentiation. Antioxid. Redox Signal. 38, 670-683.  https://doi.org/10.1089/ars.2022.0094
  36. Kolaczkowska, E. and Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159-175.  https://doi.org/10.1038/nri3399
  37. Kuboki, S., Sakai, N., Tschop, J., Edwards, M.J., Lentsch, A.B., and Caldwell, C.C. (2009). Distinct contributions of CD4+ T cell subsets in hepatic ischemia/reperfusion injury. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G1054-G1059.  https://doi.org/10.1152/ajpgi.90464.2008
  38. Kumar, V. (2013). NKT-cell subsets: promoters and protectors in inflammatory liver disease. J. Hepatol. 59, 618-620.  https://doi.org/10.1016/j.jhep.2013.02.032
  39. Lee, S., Kim, J., and Park, J.E. (2021). Single-cell toolkits opening a new era for cell engineering. Mol. Cells 44, 127-135.  https://doi.org/10.14348/molcells.2021.0002
  40. Lentsch, A.B., Kato, A., Yoshidome, H., McMasters, K.M., and Edwards, M.J. (2000). Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury. Hepatology 32, 169-173.  https://doi.org/10.1053/jhep.2000.9323
  41. Li, J., Zhao, X., Liu, X., and Liu, H. (2015). Disruption of TIM-4 in dendritic cell ameliorates hepatic warm IR injury through the induction of regulatory T cells. Mol. Immunol. 66, 117-125.  https://doi.org/10.1016/j.molimm.2015.02.004
  42. Li, S.L., Wang, Z.M., Xu, C., Che, F.H., Hu, X.F., Cao, R., Xie, Y.N., Qiu, Y., Shi, H.B., Liu, B., et al. (2022). Liraglutide attenuates hepatic ischemia-reperfusion injury by modulating macrophage polarization. Front. Immunol. 13, 869050. 
  43. Liggett, J.R., Kang, J., Ranjit, S., Rodriguez, O., Loh, K., Patil, D., Cui, Y., Duttargi, A., Nguyen, S., He, B., et al. (2022). Oral N-acetylcysteine decreases IFN-γ production and ameliorates ischemia-reperfusion injury in steatotic livers. Front. Immunol. 13, 898799. 
  44. Linares, I., Farrokhi, K., Echeverri, J., Kaths, J.M., Kollmann, D., Hamar, M., Urbanellis, P., Ganesh, S., Adeyi, O.A., Yip, P., et al. (2018). PPAR-gamma activation is associated with reduced liver ischemia-reperfusion injury and altered tissue-resident macrophages polarization in a mouse model. PLoS One 13, e0195212. 
  45. Liu, Y., Lei, Z., Chai, H., Xiang, S., Wang, Y., Yan, P., Cao, Z., Pu, X., and Wu, Z. (2022). Thrombomodulin-mediated inhibition of neutrophil extracellular trap formation alleviates hepatic ischemia-reperfusion injury by blocking TLR4 in rats subjected to liver transplantation. Transplantation 106, e126-e140.  https://doi.org/10.1097/TP.0000000000003954
  46. Liu, Y., Zhang, W., Cheng, Y., Miao, C., Gong, J., and Wang, M. (2018). Activation of PPARγ by Curcumin protects mice from ischemia/reperfusion injury induced by orthotopic liver transplantation via modulating polarization of Kupffer cells. Int. Immunopharmacol. 62, 270-276.  https://doi.org/10.1016/j.intimp.2018.07.013
  47. Lu, T., Li, Q., Lin, W., Zhao, X., Li, F., Ji, J., Zhang, Y., and Xu, N. (2023). Gut microbiota-derived glutamine attenuates liver ischemia/reperfusion injury via macrophage metabolic reprogramming. Cell. Mol. Gastroenterol. Hepatol. 15, 1255-1275.  https://doi.org/10.1016/j.jcmgh.2023.01.004
  48. Mu, J., Li, C., Shi, Y., Liu, G., Zou, J., Zhang, D.Y., Jiang, C., Wang, X., He, L., Huang, P., et al. (2022). Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia-reperfusion injury. Nat. Commun. 13, 2513. 
  49. Nakamoto, S., Ito, Y., Nishizawa, N., Goto, T., Kojo, K., Kumamoto, Y., Watanabe, M., Narumiya, S., and Majima, M. (2020). EP3 signaling in dendritic cells promotes liver repair by inducing IL-13-mediated macrophage differentiation in mice. FASEB J. 34, 5610-5627.  https://doi.org/10.1096/fj.201901955R
  50. Nakano, R., Tran, L.M., Geller, D.A., Macedo, C., Metes, D.M., and Thomson, A.W. (2021). Dendritic cell-mediated regulation of liver ischemia-reperfusion injury and liver transplant rejection. Front. Immunol. 12, 705465. 
  51. Nakayamada, S., Takahashi, H., Kanno, Y., and O'Shea, J.J. (2012). Helper T cell diversity and plasticity. Curr. Opin. Immunol. 24, 297-302.  https://doi.org/10.1016/j.coi.2012.01.014
  52. O'Leary, J.G., Lepe, R., and Davis, G.L. (2008). Indications for liver transplantation. Gastroenterology 134, 1764-1776.  https://doi.org/10.1053/j.gastro.2008.02.028
  53. Ohkubo, H., Ito, Y., Minamino, T., Eshima, K., Kojo, K., Okizaki, S., Hirata, M., Shibuya, M., Watanabe, M., and Majima, M. (2014). VEGFR1-positive macrophages facilitate liver repair and sinusoidal reconstruction after hepatic ischemia/reperfusion injury. PLoS One 9, e105533. 
  54. Okajima, K., Harada, N., Uchiba, M., and Mori, M. (2004). Neutrophil elastase contributes to the development of ischemia-reperfusion-induced liver injury by decreasing endothelial production of prostacyclin in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G1116-G1123.  https://doi.org/10.1152/ajpgi.00061.2004
  55. Parker, G.A. and Picut, C.A. (2005). Liver immunobiology. Toxicol. Pathol. 33, 52-62.  https://doi.org/10.1080/01926230590522365
  56. Pu, J.L., Huang, Z.T., Luo, Y.H., Mou, T., Li, T.T., Li, Z.T., Wei, X.F., and Wu, Z.J. (2021). Fisetin mitigates hepatic ischemia-reperfusion injury by regulating GSK3β/AMPK/NLRP3 inflammasome pathway. Hepatobiliary Pancreat. Dis. Int. 20, 352-360.  https://doi.org/10.1016/j.hbpd.2021.04.013
  57. Ren, H.Z., Xia, S.Z., Qin, X.Q., Hu, A.Y., and Wang, J.L. (2022). FOXO1 alleviates liver ischemia-reperfusion injury by regulating the Th17/Treg ratio through the AKT/Stat3/FOXO1 pathway. J. Clin. Transl. Hepatol. 10, 1138-1147.  https://doi.org/10.14218/JCTH.2021.00551
  58. Schofield, Z.V., Woodruff, T.M., Halai, R., Wu, M.C., and Cooper, M.A. (2013). Neutrophils--a key component of ischemia-reperfusion injury. Shock 40, 463-470.  https://doi.org/10.1097/SHK.0000000000000044
  59. Shamri, R., Xenakis, J.J., and Spencer, L.A. (2011). Eosinophils in innate immunity: an evolving story. Cell Tissue Res. 343, 57-83.  https://doi.org/10.1007/s00441-010-1049-6
  60. Shan, Y., Qi, D., Zhang, L., Wu, L., Li, W., Liu, H., Li, T., Fu, Z., Bao, H., and Song, S. (2023). Single-cell RNA-seq revealing the immune features of donor liver during liver transplantation. Front. Immunol. 14, 1096733.
  61. Shan, Z. and Ju, C. (2020). Hepatic macrophages in liver injury. Front. Immunol. 11, 322. 
  62. Shang, L., Ren, H., Wang, S., Liu, H., Hu, A., Gou, P., Lin, Y., Zhou, J., Zhu, W., and Shi, X. (2021). SS-31 protects liver from ischemia-reperfusion injury via modulating macrophage polarization. Oxid. Med. Cell. Longev. 2021, 6662156. 
  63. Shang, L.C., Wang, M., Liu, Y., Zhu, X., and Wang, S. (2023). MSCs ameliorate hepatic IR injury by modulating phenotypic transformation of Kupffer cells through Drp-1 dependent mitochondrial dynamics. Stem Cell Rev. Rep. 2023 May 27 [Epub]. https://doi.org/10.1007/s12015-023-10566-6 
  64. Shen, X., Wang, Y., Gao, F., Ren, F., Busuttil, R.W., Kupiec-Weglinski, J.W., and Zhai, Y. (2009). CD4 T cells promote tissue inflammation via CD40 signaling without de novo activation in a murine model of liver ischemia/ reperfusion injury. Hepatology 50, 1537-1546.  https://doi.org/10.1002/hep.23153
  65. Shimamura, K., Kawamura, H., Nagura, T., Kato, T., Naito, T., Kameyama, H., Hatakeyama, K., and Abo, T. (2005). Association of NKT cells and granulocytes with liver injury after reperfusion of the portal vein. Cell. Immunol. 234, 31-38.  https://doi.org/10.1016/j.cellimm.2005.04.022
  66. Sun, L., Wu, Q., Nie, Y., Cheng, N., Wang, R., Wang, G., Zhang, D., He, H., Ye, R.D., and Qian, F. (2018). A role for MK2 in enhancing neutrophil-derived ROS production and aggravating liver ischemia/reperfusion injury. Front. Immunol. 9, 2610. 
  67. Tian, Z., Chen, Y., and Gao, B. (2013). Natural killer cells in liver disease. Hepatology 57, 1654-1662.  https://doi.org/10.1002/hep.26115
  68. Tohme, S., Yazdani, H.O., Sud, V., Loughran, P., Huang, H., Zamora, R., Simmons, R.L., Vodovotz, Y., and Tsung, A. (2019). Computational analysis supports IL-17A as a central driver of neutrophil extracellular trap-mediated injury in liver ischemia reperfusion. J. Immunol. 202, 268-277.  https://doi.org/10.4049/jimmunol.1800454
  69. Wang, J., Xia, S., Ren, H., and Shi, X. (2022). The role and function of CD4+ T cells in hepatic ischemia-reperfusion injury. Expert Rev. Gastroenterol. Hepatol. 16, 5-11.  https://doi.org/10.1080/17474124.2022.2020642
  70. Wang, L., Li, J., He, S., Liu, Y., Chen, H., He, S., Yin, M., Zou, D., Chen, S., Luo, T., et al. (2021a). Resolving the graft ischemia-reperfusion injury during liver transplantation at the single cell resolution. Cell Death Dis. 12, 589. 
  71. Wang, Y., Sun, X., Han, X., Sun, J., Li, L., Zhang, D., and Sun, G. (2023). Resveratrol improves hepatic ischemia-reperfusion injury by inhibiting neutrophils via the ERK signaling pathway. Biomed. Pharmacother. 160, 114358. 
  72. Wang, Y., Yang, Y., Wang, M., Wang, S., Jeong, J.M., Xu, L., Wen, Y., Emontzpohl, C., Atkins, C.L., Duong, K., et al. (2021b). Eosinophils attenuate hepatic ischemia-reperfusion injury in mice through ST2-dependent IL-13 production. Sci. Transl. Med. 13, eabb6576. 
  73. Wang, Z., Han, S., Chen, X., Li, X., Xia, N., and Pu, L. (2021c). Eva1a inhibits NLRP3 activation to reduce liver ischemia-reperfusion injury via inducing autophagy in kupffer cells. Mol. Immunol. 132, 82-92.  https://doi.org/10.1016/j.molimm.2021.01.028
  74. Wang, Z., Qian, J., Lu, X., Zhang, P., Guo, R., Lou, H., Zhang, S., Yang, J., and Fan, X. (2021d). A single-cell transcriptomic atlas characterizes liver non-parenchymal cells in healthy and diseased mice. BioRxiv, https://doi.org/10.1101/2021.07.06.451396 
  75. Xin, J., Yang, T., Wu, X., Wu, Y., Liu, Y., Liu, X., Jiang, M., and Gao, W. (2023). Spatial transcriptomics analysis of zone-dependent hepatic ischemia-reperfusion injury murine model. Commun. Biol. 6, 194. 
  76. Xu, L., Yang, Y., Wen, Y., Jeong, J.M., Emontzpohl, C., Atkins, C.L., Sun, Z., Poulsen, K.L., Hall, D.R., Steve Bynon, J., et al. (2022). Hepatic recruitment of eosinophils and their protective function during acute liver injury. J. Hepatol. 77, 344-352.  https://doi.org/10.1016/j.jhep.2022.02.024
  77. Yang, X., Lu, D., Wang, R., Lian, Z., Lin, Z., Zhuo, J., Chen, H., Yang, M., Tan, W., Yang, M., et al. (2021). Single-cell profiling reveals distinct immune phenotypes that contribute to ischaemia-reperfusion injury after steatotic liver transplantation. Cell Prolif. 54, e13116. 
  78. Yazdani, H.O., Chen, H.W., Tohme, S., Tai, S., van der Windt, D.J., Loughran, P., Rosborough, B.R., Sud, V., Beer-Stolz, D., Turnquist, H.R., et al. (2017). IL-33 exacerbates liver sterile inflammation by amplifying neutrophil extracellular trap formation. J. Hepatol. 2017 Sep 2 [Epub]. https://doi.org/10.1016/j.jhep.2017.09.010 
  79. Yuan, Z., Ye, L., Feng, X., Zhou, T., Zhou, Y., Zhu, S., Jia, C., Li, H., Qiu, D., Li, K., et al. (2021). YAP-dependent induction of CD47-Enriched extracellular vesicles inhibits dendritic cell activation and ameliorates hepatic ischemia-reperfusion injury. Oxid. Med. Cell. Longev. 2021, 6617345. 
  80. Yue, S., Zhou, H., Wang, X., Busuttil, R.W., Kupiec-Weglinski, J.W., and Zhai, Y. (2017). Prolonged ischemia triggers necrotic depletion of tissue-resident macrophages to facilitate inflammatory immune activation in liver ischemia reperfusion injury. J. Immunol. 198, 3588-3595.  https://doi.org/10.4049/jimmunol.1601428
  81. Zhan, Y., Xu, D., Tian, Y., Qu, X., Sheng, M., Lin, Y., Ke, M., Jiang, L., Xia, Q., Kaldas, F.M., et al. (2022). Novel role of macrophage TXNIP-mediated CYLD-NRF2-OASL1 axis in stress-induced liver inflammation and cell death. JHEP Rep. 4, 100532. 
  82. Zheng, J., Lu, T., Zhou, C., Cai, J., Zhang, X., Liang, J., Sui, X., Chen, X., Chen, L., Sun, Y., et al. (2020). Extracellular vesicles derived from human umbilical cord mesenchymal stem cells protect liver ischemia/reperfusion injury by reducing CD154 expression on CD4+ T cells via CCT2. Adv. Sci. (Weinh.) 7, 1903746. 
  83. Zhou, C.Z., Wang, R.F., Cheng, D.L., Zhu, Y.J., Cao, Q., and Lv, W.F. (2019). FLT3/FLT3L-mediated CD103(+) dendritic cells alleviates hepatic ischemia-reperfusion injury in mice via activation of treg cells. Biomed. Pharmacother. 118, 109031. 
  84. Zhu, C., Shi, S., Jiang, P., Huang, X., Zhao, J., Jin, Y., Shen, Y., Zhou, X., Liu, H., and Cai, J. (2023). Curcumin alleviates hepatic ischemia-reperfusion injury by inhibiting neutrophil extracellular traps formation. J. Invest. Surg. 36, 2164813. 
  85. Zhuang, L., Ding, W., Zhang, Q., Ding, W., Xu, X., Yu, X., and Xi, D. (2021). TGR5 attenuated liver ischemia-reperfusion injury by activating the Keap1-Nrf2 signaling pathway in mice. Inflammation 44, 859-872.  https://doi.org/10.1007/s10753-020-01382-y
  86. Zwacka, R.M., Zhang, Y., Halldorson, J., Schlossberg, H., Dudus, L., and Engelhardt, J.F. (1997). CD4(+) T-lymphocytes mediate ischemia/ reperfusion-induced inflammatory responses in mouse liver. J. Clin. Invest. 100, 279-289.  https://doi.org/10.1172/JCI119533