Acknowledgement
This work was supported by the BK21 Four program, Alchemist project funded by the MOTIE (20012411), and a National Research Foundation of Korea (NRF) grant (2021R1A2C4001837), (2021R1A6A3A13038516).
References
- Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448:313-7. https://doi.org/10.1038/nature05934
- Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003;113:631-42. https://doi.org/10.1016/S0092-8674(03)00393-3
- Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003;113:643-55. https://doi.org/10.1016/S0092-8674(03)00392-1
- Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005;122:947-56. https://doi.org/10.1016/j.cell.2005.08.020
- Darr H, Mayshar Y, Benvenisty N. Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features. Development 2006;133:1193-201. https://doi.org/10.1242/dev.02286
- Yang F, Zhang J, Liu Y, Cheng D, Wang H. Structure and functional evaluation of porcine NANOG that is a single-exon gene and has two pseudogenes. Int J Biochem Cell Biol 2015;59:142-52. https://doi.org/10.1016/j.biocel.2014.12.009
- Chen L, Yabuuchi A, Eminli S, et al. Cross-regulation of the Nanog and Cdx2 promoters. Cell Res 2009;19:1052-61. https://doi.org/10.1038/cr.2009.79
- Mendjan S, Mascetti VL, Ortmann D, et al. NANOG and CDX2 pattern distinct subtypes of human mesoderm during exit from pluripotency. Cell Stem Cell 2014;15:310-25. https://doi.org/10.1016/j.stem.2014.06.006
- Zhang X, Neganova I, Przyborski S, et al. A role for NANOG in G1 to S transition in human embryonic stem cells through direct binding of CDK6 and CDC25A. J Cell Biol 2009;184:67-82. https://doi.org/10.1083/jcb.200801009
- Chazaud C, Yamanaka Y. Lineage specification in the mouse preimplantation embryo. Development 2016;143:1063-74. https://doi.org/10.1242/dev.128314
- Allegre N, Chauveau S, Dennis C, et al. NANOG initiates epiblast fate through the coordination of pluripotency genes expression. Nat Commun 2022;13:3550. https://doi.org/10.1038/s41467-022-30858-8
- Frankenberg S, Gerbe F, Bessonnard S, et al. Primitive endoderm differentiates via a three-step mechanism involving Nanog and RTK signaling. Dev Cell 2011;21:1005-13. https://doi.org/10.1016/j.devcel.2011.10.019
- Ortega MS, Kelleher AM, O'Neil E, et al. NANOG is required to form the epiblast and maintain pluripotency in the bovine embryo. Mol Reprod Dev 2020;87:152-60. https://doi.org/10.1002/mrd.23304
- Levasseur DN, Wang J, Dorschner MO, Stamatoyannopoulos JA, Orkin SH. Oct4 dependence of chromatin structure within the extended Nanog locus in ES cells. Genes Dev 2008;22:575-80. https://doi.org/10.1101/gad.1606308
- Lee M, Choi KH, Oh JN, et al. SOX2 plays a crucial role in cell proliferation and lineage segregation during porcine pre-implantation embryo development. Cell Prolif 2021;54:e13097. https://doi.org/10.1111/cpr.13097
- Cauffman G, De Rycke M, Sermon K, Liebaers I, Van De Velde H. Markers that define stemness in ESC are unable to identify the totipotent cells in human preimplantation embryos. Hum Reprod 2009;24:63-70. https://doi.org/10.1093/humrep/den351
- Canizo JR, Ynsaurralde Rivolta AE, Vazquez Echegaray C, et al. A dose-dependent response to MEK inhibition determines hypoblast fate in bovine embryos. BMC Dev Biol 2019;19:13. https://doi.org/10.1186/s12861-019-0193-9
- Liu J, An L, Wang J, et al. Dynamic patterns of H3K4me3, H3K27me3, and Nanog during rabbit embryo development. Am J Transl Res 2019;11:430-41.
- Ghimire S, Heindryckx B, Van der Jeught M, et al. Inhibition of transforming growth factor β signaling promotes epiblast formation in mouse embryos. Stem Cells Dev 2015;24:497-506. https://doi.org/10.1089/scd.2014.0206
- Heng JC, Orlov Y, Ng HH. Transcription factors for the modulation of pluripotency and reprogramming. Cold Spring Harb Symp Quant Biol 2010;75:237-44. https://doi.org/10.1101/sqb.2010.75.003
- Springer C, Zakhartchenko V, Wolf E, Simmet K. Hypoblast formation in bovine embryos does not depend on NANOG. Cells 2021;10:2232. https://doi.org/10.3390/cells10092232
- Kim SH, Lee M, Choi KH, et al. Species-specific enhancer activity of OCT4 in porcine pluripotency: the porcine OCT4 reporter system could monitor pluripotency in porcine embryo development and embryonic stem cells. Stem Cells Int 2022;2022:6337532. https://doi.org/10.1155/2022/6337532
- Stamatiadis P, Boel A, Cosemans G, et al. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences. Hum Reprod 2021;36:1242-52. https://doi.org/10.1093/humrep/deab027
- Oh JN, Lee M, Choe GC, et al. Identification of the lineage markers and inhibition of DAB2 in in vitro fertilized porcine embryos. Int J Mol Sci 2020;21:7275. https://doi.org/10.3390/ijms21197275
- Choi KH, Lee CK. Pig pluripotent stem cells as a candidate for biomedical application. J Anim Reprod Biotechnol 2019;34:139-47. https://doi.org/10.12750/JARB.34.3.139
- Park JK, Kim HS, Uh KJ, et al. Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig. PloS One 2013;8:e52481. https://doi.org/10.1371/journal.pone.0052481
- Mashiko D, Fujihara Y, Satouh Y, et al. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci Rep 2013;3:3355. https://doi.org/10.1038/srep03355
- Lee DK, Choi KH, Hwang JY, Oh JN, Kim SH, Lee CK. Stearoyl-coenzyme A desaturase 1 is required for lipid droplet formation in pig embryo. Reproduction 2019;157:235-43. https://doi.org/10.1530/REP-18-0556
- Lee M, Oh JN, Choe GC, et al. Changes in OCT4 expression play a crucial role in the lineage specification and proliferation of preimplantation porcine blastocysts. Cell Prolif 2022;55:e13313. https://doi.org/10.1111/cpr.13313
- Silva J, Nichols J, Theunissen TW, et al. Nanog is the gateway to the pluripotent ground state. Cell 2009;138:722-37. https://doi.org/10.1016/j.cell.2009.07.039
- Bou G, Guo S, Guo J, et al. Effect of NANOG overexpression on porcine embryonic development and pluripotent embryonic stem cell formation in vitro. Zygote 2022;30:324-9. https://doi.org/10.1017/S0967199421000678
- Bessonnard S, De Mot L, Gonze D, et al. Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network. Development 2014;141:3637-48. https://doi.org/10.1242/dev.109678
- Messerschmidt DM, Kemler R. Nanog is required for primitive endoderm formation through a non-cell autonomous mechanism. Dev Biol 2010;344:129-37. https://doi.org/10.1016/j.ydbio.2010.04.020
- Kirchhof N, Carnwath JW, Lemme E, Anastassiadis K, Schöler H, Niemann H. Expression pattern of Oct-4 in preimplantation embryos of different species. Biol Reprod 2000;63:1698-705. https://doi.org/10.1095/biolreprod63.6.1698