DOI QR코드

DOI QR Code

A comprehensive longitudinal study of gut microbiota dynamic changes in laying hens at four growth stages prior to egg production

  • Seojin Choi (Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University) ;
  • Eun Bae Kim (Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University)
  • Received : 2023.07.18
  • Accepted : 2023.10.16
  • Published : 2023.11.01

Abstract

Objective: The poultry industry is a primary source of animal protein worldwide. The gut microbiota of poultry birds, such as chickens and ducks, is critical in maintaining their health, growth, and productivity. This study aimed to identify longitudinal changes in the gut microbiota of laying hens from birth to the pre-laying stage. Methods: From a total of 80 Hy-Line Brown laying hens, birds were selected based on weight at equal intervals to collect feces (n = 20 per growth) and ileal contents (n = 10 per growth) for each growth stage (days 10, 21, 58, and 101). The V4 regions of the 16S rRNA gene were amplified after extracting DNA from feces and ileal contents. Amplicon sequencing was performed using Illumina, followed by analysis. Results: Microbial diversity increased with growth stages, regardless of sampling sites. Microbial community analysis indicated that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla in the feces and ileal. The abundance of Lactobacillus was highest on day 10, and that of Escherichia-shigella was higher on day 21 than those at the other stages at the genus level (for the feces and ileal contents; p<0.05). Furthermore, Turicibacter was the most abundant genus after changing feed (for the feces and ileal contents; p<0.05). The fecal Ruminococcus torques and ileal Lysinibacillus were negatively correlated with the body weights of chickens (p<0.05). Conclusion: The gut microbiota of laying hens changes during the four growth stages, and interactions between microbiota and feed may be present. Our findings provide valuable data for understanding the gut microbiota of laying hens at various growth stages and future applied studies.

Keywords

Acknowledgement

We thank the Kangwon National University Animal Farm. Jongbin Park, Biao Xuan, and Gui-deuk Jin helped with fecal sampling and provided considerable help with the experiment.

References

  1. Mottet A, Tempio G. Global poultry production: current state and future outlook and challenges. World's Poult Sci J 2017;73:245-56. https://doi.org/10.1017/S0043933917000071
  2. Pan D, Yu Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 2014;5:108-19. https://doi.org/10.4161/gmic.26945
  3. Dahl WJ, Mendoza DR, Lambert JM. Diet, nutrients and the microbiome. In: Progress in Molecular Biology and Translational Science. Cambridge, MA, USA: Academic Press; 2020. Vol 171 pp. 237-63. https://doi.org/10.1016/bs.pmbts.2020.04.006
  4. Nowland TL, Plush KJ, Barton M, Kirkwood RN. Development and function of the intestinal microbiome and potential implications for pig production. Animals 2019;9:76. https://doi.org/10.3390/ani9030076
  5. McLoughlin S, Spillane C, Claffey N, et al. Rumen microbiome composition is altered in sheep divergent in feed efficiency. Front Microbiol 2020;11:1981. https://doi.org/10.3389/fmicb.2020.01981
  6. Adedokun SA, Olojede OC. Optimizing gastrointestinal integrity in poultry: the role of nutrients and feed additives. Front Vet Sci 2019;5:348. https://doi.org/10.3389/fvets.2018.00348
  7. Han GG, Lee JY, Jin GD, et al. Tracing of the fecal microbiota of commercial pigs at five growth stages from birth to shipment. Sci Rep 2018;8:6012. https://doi.org/10.1038/s41598-018-24508-7
  8. Khan S, Moore RJ, Stanley D, Chousalkar KK. The gut microbiota of laying hens and its manipulation with prebiotics and probiotics to enhance gut health and food safety. Appl Environ Microbiol 2020;86:e00600-20. https://doi.org/10.1128/AEM.00600-20
  9. Jha R, Das R, Oak S, Mishra P. Probiotics (direct-fed microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: A systematic review. Animals 2020;10:1863. https://doi.org/10.3390/ani10101863
  10. Han GG, Lee JY, Jin GD, et al. Evaluating the association between body weight and the intestinal microbiota of weaned piglets via 16S rRNA sequencing. Appl Microbiol Biotechnol 2017;101:5903-11. https://doi.org/10.1007/s00253-017-8304-7
  11. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 2019;37:852-7. https://doi.org/10.1038/s41587-019-0209-9
  12. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J 2011;17:10-2. https://doi.org/10.14806/ej.17.1.200
  13. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 2016;13:581-3. https://doi.org/10.1038/nmeth.3869
  14. Langille MG, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 2013;31:814-21. https://doi.org/10.1038/nbt.2676
  15. Van Goor A, Redweik GA, Stromberg ZR, Treadwell CG, Xin H, Mellata M. Microbiome and biological blood marker changes in hens at different laying stages in conventional and cage free housings. Poult Sci 2020;99:2362-74. https://doi.org/10.1016/j.psj.2020.01.011
  16. Glendinning L, McLachlan G, Vervelde L. Age-related differences in the respiratory microbiota of chickens. PLoS One 2017;12:e0188455. https://doi.org/10.1371/journal.pone.0188455
  17. Ricke SC. Strategies to improve poultry food safety, a landscape review. Ann Rev Anim Biosci 2021;9:379-400. https://doi.org/10.1146/annurev-animal-061220-023200
  18. Xi Y, Shuling N, Kunyuan T, et al. Characteristics of the intestinal flora of specific pathogen free chickens with age. Microb Pathog 2019;132:325-34. https://doi.org/10.1016/j.micpath.2019.05.014
  19. Liu Y, Yan T, Ren Z, Yang X. Age-associated changes in caecal microbiome and their apparent correlations with growth performances of layer pullets. Anim Nutr 2021;7:841-8. https://doi.org/10.1016/j.aninu.2020.11.019
  20. Yang Y, Chen T, Zhang X, Wang X. Age-related functional changes of intestinal flora in rats. FEMS Microbiol Lett 2021;368:fnab051. https://doi.org/10.1093/femsle/fnab051
  21. Chen S, Xiang H, Zhang H, et al. Rearing system causes changes of behavior, microbiome, and gene expression of chickens. Poult Sci 2019;98:3365-76. https://doi.org/10.3382/ps/pez140
  22. Kraimi N, Dawkins M, Gebhardt-Henrich SG, et al. Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: a review. Physiol Behav 2019;210:112658. https://doi.org/10.1016/j.physbeh.2019.112658
  23. Singh Y, Ravindran V, Wester T, Molan A, Ravindran G. Influence of feeding coarse corn on performance, nutrient utilization, digestive tract measurements, carcass characteristics, and cecal microflora counts of broilers. Poult Sci 2014;93:607-16. https://doi.org/10.3382/ps.2013-03542
  24. Wu X, Wen Z, Hua J. Effects of dietary inclusion of Lactobacillus and inulin on growth performance, gut microbiota, nutrient utilization, and immune parameters in broilers. Poult Sci 2019;98:4656-63. https://doi.org/10.3382/ps/pez166
  25. Wu Z, Yang K, Zhang A, et al. Effects of Lactobacillus acidophilus on the growth performance, immune response, and intestinal barrier function of broiler chickens challenged with Escherichia coli O157. Poult Sci 2021;100:101323. https://doi.org/10.1016/j.psj.2021.101323
  26. Madigan-Stretton J, Mikkelsen D, Soumeh EA. Multienzyme super-dosing in broiler chicken diets: The implications for gut morphology, microbial profile, nutrient digestibility, and bone mineralization. Animals 2021;11:1. https://doi.org/10.3390/ani11010001
  27. Song J, Li Q, Everaert N, et al. Effects of inulin supplementation on intestinal barrier function and immunity in specific pathogen-free chickens with Salmonella infection. J Anim Sci 2020;98:skz396. https://doi.org/10.1093/jas/skz396
  28. Lakshminarayanan B, Harris HM, Coakley M, et al. Prevalence and characterization of Clostridium perfringens from the faecal microbiota of elderly Irish subjects. J Med Microbiol 2013;62:457-66. https://doi.org/10.1099/jmm.0.052258-0
  29. Jonsson H, Hugerth LW, Sundh J, Lundin E, Andersson AF. Genome sequence of segmented filamentous bacteria present in the human intestine. Commun Biol 2020;3:485. https://doi.org/10.1038/s42003-020-01214-7
  30. Richards-Rios P, Fothergill J, Bernardeau M, Wigley P. Development of the ileal microbiota in three broiler breeds. Front Vet Sci 2020;7:17.
  31. Zhou W, Xu H, Zhan L, Lu X, Zhang L. Dynamic development of fecal microbiome during the progression of diabetes mellitus in Zucker diabetic fatty rats. Front Microbiol 2019;10:232. https://doi.org/10.3389/fmicb.2019.00232
  32. Gyawali I, Zeng Y, Zhou J, et al. Effect of novel Lactobacillus paracaesi microcapsule on growth performance, gut health and microbiome community of broiler chickens. Poult Sci 2022;101:101912. https://doi.org/10.1016/j.psj.2022.101912
  33. Rajilic-Stojanovic M, De Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 2014;38:996-1047. https://doi.org/10.1111/1574-6976.12075
  34. Kogut MH, Genovese KJ, Byrd JA, et al. Chicken-specific kinome analysis of early host immune signaling pathways in the cecum of newly hatched chickens infected with salmonella enterica serovar enteritidis. Front Cell Infect Microbiol 2022;12:899395. https://doi.org/10.3389/fcimb.2022.899395