Acknowledgement
This research was funded by The National Natural Science Foundation of China (No. 21239013), Anhui province Natural Science Foundation of China (No. 2008085MC86), National Innovative Training Program for College Student (No. 202210364029), and Huangshan Technology R&D Program (No. 2020KN-07).
References
- Rawson P, Stockum C, Peng L, et al. Metabolic proteomics of the liver and mammary gland during lactation. J Proteomics 2012;75:4429-35. https://doi.org/10.1016/j.jprot.2012.04.019
- Aschenbach JR, Kristensen NB, Donkin SS, Hammon HM, Penner GB. Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough. IUBMB Life 2010;62:869-77. https://doi.org/10.1002/iub.400
- Huntington GB. Energy metabolism in the digestive tract and liver of cattle: influence of physiological state and nutrition. Reprod Nutr Dev 1990;30:35-47. https://doi.org/10.1051/rnd:19900103
- Oba M, Allen MS. Extent of hypophagia caused by propionate infusion is related to plasma glucose concentration in lactating dairy cows. J Nutr 2003;133:1105-12. https://doi.org/10.1093/jn/133.4.1105
- Li Y, Li X, Song Y, et al. Effect of leptin on the gluconeogenesis in calf hepatocytes cultured in vitro. Cell Biol Int 2013;37:1350-3. https://doi.org/10.1002/cbin.10172
- Hanson RW, Reshef L. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu Rev Biochem 1997;66:581-611. https://doi.org/10.1146/annurev.biochem.66.1.581
- Fassah DM, Jeong JY, Baik M. Hepatic transcriptional changes in critical genes for gluconeogenesis following castration of bulls. Asian-Australas J Anim Sci 2018;31:537-47. https://doi.org/10.5713/ajas.17.0875
- Agca C, Greenfield RB, Hartwell JR, Donkin SS. Cloning and characterization of bovine cytosolic and mitochondrial PEPCK during transition to lactation. Physiol Genomics 2002;11:53-63. https://doi.org/10.1152/physiolgenomics.00108.2001
- Zhang Q, Koser SL, Bequette BJ, Donkin SS. Effect of propionate on mRNA expression of key genes for gluconeogenesis in liver of dairy cattle. J Dairy Sci 2015;98:8698-709. https://doi.org/10.3168/jds.2015-9590
- Zhang Q, Koser SL, Donkin SS. Propionate induces mRNA expression of gluconeogenic genes in bovine calf hepatocytes. J Dairy Sci 2016;99:3908-15. https://doi.org/10.3168/jds.2015-10312
- Li Y, Ding H, Wang X, et al. High levels of acetoacetate and glucose increase expression of cytokines in bovine hepatocytes, through activation of the NF-κB signalling pathway. J Dairy Res 2016;83:51-7. https://doi.org/10.1017/S0022029915000680
- Zhang B, Li M, Yang W, et al. Mitochondrial dysfunction and endoplasmic reticulum stress in calf hepatocytes are associated with fatty acid-induced ORAI calcium release-activated calcium modulator 1 signaling. J Dairy Sci 2020;103:11945-56. https://doi.org/10.3168/jds.2020-18684
- Donkin SS, Armentano LE. Preparation of extended in vitro cultures of bovine hepatocytes that are hormonally responsive. J Anim Sci 1993;71:2218-27. https://doi.org/10.2527/1993.7182218x
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
- Li Y, Ding H, Liu L, et al. Non-esterified fatty acid induce dairy cow hepatocytes apoptosis via the mitochondria-mediated ROS-JNK/ERK signaling pathway. Front Cell Dev Biol 2020;8:245. https://doi.org/10.3389/fcell.2020.00245
- Zhu W, Zhang Y, Ren CH, et al. Identification of proteomic markers for ram spermatozoa motility using a tandem mass tag (TMT) approach. J Proteomics 2020;210:103438. https://doi.org/10.1016/j.jprot.2019.103438
- Agarwal U, Hu Q, Bequette BJ. Propionate supplementation improves nitrogen use by reducing urea flux in sheep. J Anim Sci 2015;93:4883-90. https://doi.org/10.2527/jas.2015-9226
- Lin M, Jiang M, Yang T, Zhao G, Zhan K. Overexpression of GPR41 attenuated glucose production in propionate-induced bovine hepatocytes. Front Vet Sci 2022;9:981640. https://doi.org/10.3389/fvets.2022.981640
- Lao-On U, Attwood PV, Jitrapakdee S. Roles of pyruvate carboxylase in human diseases: from diabetes to cancers and infection. J Mol Med (Berl) 2018;96:237-47. https://doi.org/10.1007/s00109-018-1622-0
- Chishti GA, Salfer IJ, Suarez-Mena FX, Harvatine KJ, Heinrichs AJ. Short communication: Relationships between physical form of oats in starter, rumen pH, and volatile fatty acids on hepatic expression of genes involved in metabolism and inflammation in dairy calves. J Dairy Sci 2020;103:439-46. https://doi.org/10.3168/jds.2019-16296
- Yu S, Meng S, Xiang M, Ma H. Phosphoenolpyruvate carboxykinase in cell metabolism: Roles and mechanisms beyond gluconeogenesis. Mol Metab 2021;53:101257. https://doi.org/10.1016/j.molmet.2021.101257
- Zhang Q, Koser SL, Donkin SS. Identification of promoter response elements that mediate propionate induction of bovine cytosolic phosphoenolpyruvate carboxykinase (PCK1) gene transcription. J Dairy Sci 2021;104:7252-61. https://doi.org/10.3168/jds.2020-18993
- Aiello RJ, Armentano LE. Gluconeogenesis in goat hepatocytes is affected by calcium, ammonia and other key metabolites but not primarily through cytosolic redox state. Comp Biochem Physiol B 1987;88:193-201. https://doi.org/10.1016/0305-0491(87)90100-3
- van de Werve G, Lange A, Newgard C, Mechin MC, Li Y, Berteloot A. New lessons in the regulation of glucose metabolism taught by the glucose 6-phosphatase system. Eur J Biochem 2000;267:1533-49. https://doi.org/10.1046/j.1432-1327.2000.01160.x
- Zhan K, Yang TY, Chen Y, Jiang MC, Zhao GQ. Propionate enhances the expression of key genes involved in the gluconeogenic pathway in bovine intestinal epithelial cells. J Dairy Sci 2020;103:5514-24. https://doi.org/10.3168/jds.2019-17309