Acknowledgement
We also thank the BT research facility center, Chung-Ang University.
References
- He SP, Arowolo MA, Medrano RF, et al. Impact of heat stress and nutritional interventions on poultry production. Worlds Poult Sci J 2018;74:647-64. https://doi.org/10.1017/S0043933918000727
- Balnave D. Challenges of accurately defining the nutrient requirements of heat-stressed poultry. Poult Sci 2004;83:5-14. https://doi.org/10.1093/ps/83.1.5
- St-Pierre NR, Cobanov B, Schnitkey G. Economic losses from heat stress by US livestock industries. J Dairy Sci 2003;86:E52-77. https://doi.org/10.3168/jds.S0022-0302(03)74040-5
- Lin H, Du R, Gu XH, Li FC, Zhang ZY. A study on the plasma biochemical indices of heat-stressed broilers. Asian-Australas J Anim Sci 2000;13:1210-8. https://doi.org/10.5713/ajas.2000.1210
- Lan PTN, Sakamoto M, Benno Y. Effects of two probiotic Lactobacillus strains on jejunal and cecal microbiota of broiler chicken under acute heat stress condition as revealed by molecular analysis of 16S rRNA genes. Microbiol Immunol 2004;48:917-29. https://doi.org/10.1111/j.1348-0421.2004.tb03620.x
- Kucuk O, Sahin N, Sahin K. Supplemental zinc and vitamin A can alleviate negative effects of heat stress in broiler chickens. Biol Trace Elem Res 2003;94:225-35. https://doi.org/10.1385/BTER:94:3:225
- Saeed M, Babazadeh D, Naveed M, Arain MA, Hassan FU, Chao S. Reconsidering betaine as a natural anti-heat stress agent in poultry industry: A review. Trop Anim Health Prod 2017;49:1329-38. https://doi.org/10.1007/s11250-017-1355-z
- Al-Sagan AA, Al-Abdullatif A, Hussein EOS, et al. Effects of betaine supplementation on live performance, selected blood parameters, and expression of water channel and stress-related mRNA transcripts of delayed placement broiler chicks. Front Vet Sci 2021;7:632101. https://doi.org/10.3389/fvets.2020.632101
- Ratriyanto A, Mosenthin R. Osmoregulatory function of betaine in alleviating heat stress in poultry. J Anim Physiol Anim Nutr 2018;102:1634-50. https://doi.org/10.1111/jpn.12990
- Xie J, Tang L, Lu L, et al. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus). PloS One 2014;9:e102204. https://doi.org/10.1371/journal.pone.0102204
- Jastrebski SF, Lamont SJ, Schmidt CJ. Chicken hepatic response to chronic heat stress using integrated transcriptome and metabolome analysis. PloS One 2017;12:e0181900. https://doi.org/10.1371/journal.pone.0181900
- Zaefarian F, Abdollahi MR, Cowieson A, Ravindran V. Avian liver: the forgotten organ. Animals 2019;9:63. https://doi.org/10.3390/ani9020063
- Kim DY, Lim B, Kim J, Kil DY. Integrated transcriptome analysis for the hepatic and jejunal mucosa tissues of broiler chickens raised under heat stress conditions. J Anim Sci Biotechnol 2022;13:79. https://doi.org/10.1186/s40104-022-00734-y
- Yang Z, Yang HM, Gong DQ, et al. Transcriptome analysis of hepatic gene expression and DNA methylation in methionine- and betaine-supplemented geese (Anser cygnoides domesticus). Poult Sci 2018;97:3463-77. https://doi.org/10.3382/ps/pey242
- Aviagen. Ross 308 broiler: nutrition specifications. Huntsville, AL, USA: Aviagen Inc; 2018.
- Kim DY, Kim JH, Choi WJ, Han GP, Kil DY. Comparative effects of dietary functional nutrients on growth performance, meat quality, immune responses, and stress biomarkers in broiler chickens raised under heat stress conditions. Anim Biosci 2021;34:1839-48. https://doi.org/10.5713/ab.21.0230
- Lim B, Kim S, Lim K, et al. Integrated time-serial transcriptome networks reveal common innate and tissue-specific adaptive immune responses to PRRSV infection. Vet Res 2020;51:128. https://doi.org/10.1186/s13567-020-00850-5
- Ensembl. Gallus_gallus - Ensembl genome browser 105 [internet]. Ensembl; c2023 [cited 2021 Jan 19]. Available from: http://asia.ensembl.org/Gallus_gallus/Info/Index
- Wasti S, Sah N, Mishra B. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals 2020;10:1266. https://doi.org/10.3390/ani10081266
- Habashy WS, Milfort MC, Adomako K, Attia YA, Rekaya R, Aggrey SE. Effect of heat stress on amino acid digestibility and transporters in meat-type chickens. Poult Sci 2017;96:2312-9. https://doi.org/10.3382/ps/pex027
- Habashy WS, Milfort MC, Fuller AL, Attia YA, Rekaya R, Aggrey SE. Effect of heat stress on protein utilization and nutrient transporters in meat-type chickens. Int J Biometeorol 2017;61:2111-8. https://doi.org/10.1007/s00484-017-1414-1
- Bortoluzzi A, Furini F, Scire CA. Osteoarthritis and its management-epidemiology, nutritional aspects and environmental factors. Autoimmun Rev 2018;17:1097-104. https://doi.org/10.1016/j.autrev.2018.06.002
- Ji FJ, Wang LX, Yang HS, Hu A, Yin YL. Review: The roles and functions of glutamine on intestinal health and performance of weaning pigs. Animal 2019;13:2727-35. https://doi.org/10.1017/S1751731119001800
- Farag MR, Alagawany M, El-Hack MEA, et al. Role of chromium in poultry nutrition and health: Beneficial applications and toxic effects. Int J Pharmacol 2017;13:907-15. https://doi.org/10.3923/ijp.2017.907.915
- Kim JH, Lee HK, Yang TS, Kang HK, Kil DY. Effect of different sources and inclusion levels of dietary fat on productive performance and egg quality in laying hens raised under hot environmental conditions. Asian-Australas J Anim Sci 2019;32:1407-13. https://doi.org/10.5713/ajas.19.0063
- Metzler-Zebeli BU, Eklund M, Mosenthin R. Impact of osmoregulatory and methyl donor functions of betaine on intestinal health and performance in poultry. Worlds Poult Sci J 2009;65:419-42. https://doi.org/10.1017/S0043933909000300
- Kang S, Kim D, Lee S, et al. An acute, rather than progressive, increase in temperature-humidity index has severe effects on mortality in laying hens. Front Vet Sci 2020;7: 568093. https://doi.org/10.3389/fvets.2020.568093
- Barnes DM, Song Z, Klasing KC, Bottje W. Protein metabolism during an acute phase response in chickens. Amino Acids 2002;22:15-26. https://doi.org/10.1007/s726-002-8198-6
- Lara LJ, Rostagno MH. Impact of heat stress on poultry production. Animals 2013;3:356-69. https://doi.org/10.3390/ani3020356
- Dubrez L, Causse S, Borges Bonan N, Dumetier B, Garrido C. Heat-shock proteins: Chaperoning DNA repair. Oncogene 2020;39:516-29. https://doi.org/10.1038/s41388-019-1016-y
- Bochman ML, Schwacha A. The Mcm2-7 complex has in vitro helicase activity. Mol Cell 2008;31:287-93. https://doi.org/10.1016/j.molcel.2008.05.020
- Mori Y, Inoue Y, Taniyama Y, Tanaka S, Terada Y. Phosphorylation of the centrosomal protein, Cep169, by Cdk1 promotes its dissociation from centrosomes in mitosis. Biochem Biophys Res Commun 2015;468:642-6. https://doi.org/10.1016/j.bbrc.2015.11.004
- Li J, Poolman RA, Brooks G. Role of G1 phase cyclins and cyclin-dependent kinases during cardiomyocyte hypertrophic growth in rats. Am J Physiol Heart Circ Physiol 1998;275: H814-22. https://doi.org/10.1152/ajpheart.1998.275.3.H814
- Zhang Y, Morar M, Ealick SE. Structural biology of the purine biosynthetic pathway. Cell Mol Life Sci 2008;65:3699-724. https://doi.org/10.1007/s00018-008-8295-8
- Hille R, Nishino T. Xanthine oxidase and xanthine dehydrogenase. FASEB J 1995;9:995-1003. https://doi.org/10.1096/fasebj.9.11.7649415
- Venkatachalam KV. Human 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthase: Biochemistry, molecular biology and genetic deficiency. IUBMB Life 2003;55:1-11. https://doi.org/10.1080/1521654031000072148
- Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: Essential components in cyclic nucleotide signaling. Annu Rev Biochem 2007;76:481-511. https://doi.org/10.1146/annurev.biochem.76.060305.150444
- Traut TW. Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 1994;140:1-22. https://doi.org/10.1007/BF00928361
- Tang Z, Ye W, Chen H, et al. Role of purines in regulation of metabolic reprogramming. Purinergic Signal 2019;15:423-38. https://doi.org/10.1007/s11302-019-09676-z
- Nedergaard S, Bolam JP, Greenfield SA. Facilitation of a dendritic calcium conductance by 5-hydroxytryptamine in the substantia nigra. Nature 1988;333:174-7. https://doi.org/10.1038/333174a0
- Calder PC. Very long-chain n-3 fatty acids and human health: Fact, fiction and the future. Proc Nutr Soc 2018;77:52-72. https://doi.org/10.1017/S0029665117003950
- Funk CD. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science 2001;294:1871-5. https://doi.org/10.1126/science.294.5548.1871
- Liu L, Liu X, Cui H, Liu R, Zhao G, Wen J. Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens. BMC Genomics 2019;20:863. https://doi.org/10.1186/s12864-019-6221-0
- McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system-from concept to molecular analysis. Eur J Biochem 1997;244:1-14. https://doi.org/10.1111/j.1432-1033.1997.00001.x
- Zhang H, Wang S, Wang Z, et al. A genome-wide scan of selective sweeps in two broiler chicken lines divergently selected for abdominal fat content. BMC Genomics 2012;13:704. https://doi.org/10.1186/1471-2164-13-704
- Muret K, Desert C, Lagoutte L, et al. Long noncoding RNAs in lipid metabolism: Literature review and conservation analysis across species. BMC Genomics 2019;20:882. https://doi.org/10.1186/s12864-019-6093-3
- Wang G, Kim WK, Cline MA, Gilbert ER. Factors affecting adipose tissue development in chickens: A review. Poult Sci 2017;96:3687-99. https://doi.org/10.3382/ps/pex184
- Saunderson CL, Mackinlay J. Changes in body-weight, composition and hepatic enzyme activities in response to dietary methionine, betaine and choline levels in growing chicks. Br J Nutr 1990;63:339-49. https://doi.org/10.1079/BJN19900120
- Zhan Y, Su H, An W. Glycosyltransferases and non-alcoholic fatty liver disease. World J Gastroenterol 2016;22:2483-93. https:// doi.org/10.3748/wjg.v22.i8.2483
- D'Andre HC, Paul W, Shen X, et al. Identification and characterization of genes that control fat deposition in chickens. J Anim Sci Biotechnol 2013;4:43. https://doi.org/10.1186/2049-1891-4-43
- Lee M, Park H, Heo JM, Choi HJ, Seo S. Multi-tissue transcriptomic analysis reveals that L-methionine supplementation maintains the physiological homeostasis of broiler chickens than D-methionine under acute heat stress. Plos One 2021;16:e0246063. https://doi.org/10.1371/journal.pone.0246063
- Zhang L, Li P, Liu R, et al. The identification of loci for immune traits in chickens using a genome-wide association study. PloS One 2015;10:e0117269. https://doi.org/10.1371/journal.pone.0117269
- Baggiolini M. Chemokines in pathology and medicine. J Intern Med 2001;250:91-104. https://doi.org/10.1046/j.1365-2796.2001.00867.x
- Alam MS, Costales MG, Cavanaugh C, Williams K. Extracellular adenosine generation in the regulation of pro-inflammatory responses and pathogen colonization. Biomolecules 2015;5:775-92. https://doi.org/10.3390/biom5020775
- Tapinos NI, Polihronis M, Thyphronitis G, Moutsopoulos HM. Characterization of the cysteine-rich secretory protein 3 gene as an early-transcribed gene with a putative role in the pathophysiology of Sjogren's syndrome. Arthritis Rheum 2002;46:215-22. https://doi.org/10.1002/1529-0131(200201)46:1<215::AID-ART10024>3.0.CO;2-M
- Berndt A, Pieper J, Methner U. Circulating γδ T cells in response to Salmonellaenterica serovar Enteritidis exposure in chickens. Infect Immun 2006;74:3967-78. https://doi.org/10.1128/IAI.01128-05