DOI QR코드

DOI QR Code

Effect of dietary betaine supplementation on the liver transcriptome profile in broiler chickens under heat stress conditions

  • Deok Yun Kim (Department of Animal Science and Technology, Chung-Ang University) ;
  • Gi Ppeum Han (Department of Animal Science and Technology, Chung-Ang University) ;
  • Chiwoong Lim (Department of Animal Science and Technology, Chung-Ang University) ;
  • Jun-Mo Kim (Department of Animal Science and Technology, Chung-Ang University) ;
  • Dong Yong Kil (Department of Animal Science and Technology, Chung-Ang University)
  • Received : 2023.06.20
  • Accepted : 2023.08.28
  • Published : 2023.11.01

Abstract

Objective: The objective of the present study was to investigate the effect of dietary betaine (BT) supplementation on the hepatic transcriptome profiles in broiler chickens raised under heat stress (HS) conditions. Methods: A total of 180 (21-d-old) Ross 308 male broiler chicks were allotted to 1 of 3 treatment groups with 6 replicated cages in a completely randomized design. One group was kept under thermoneutral conditions at all times and was fed a basal diet (PC). Other 2 groups were exposed to a cyclic heat stress condition. One of the 2 groups under heat stress conditions was fed the basal diet as a negative control (NC), whereas the other group was fed the basal diet supplemented with 0.2% BT. All chickens were provided with diets and water ad libitum for 21 d. Following the experiment, the liver samples were collected for RNA sequencing analysis. Results: Broiler chickens in NC and BT group had decreased (p<0.05) growth performance. In the transcriptome analysis, the number of differentially expressed genes were identified in the liver by HS conditions and dietary BT supplementation. In the comparison between NC and PC treatments, genes related to energy and nucleic acid metabolism, amino acid metabolism, and immune system were altered by HS, which support the reason why heat-stressed poultry had decreased growth performance. In the comparison between NC and BT treatments, genes related to lipid metabolism, carbohydrate metabolism, and immune system were differently expressed under HS conditions. Conclusion: HS negatively impacts various physiological processes, including DNA replication, metabolism of amino acids, lipids, and carbohydrates, and cell cycle progression in broiler chickens. Dietary BT supplementation, however, offers potential counteractive effects by modulating liver function, facilitating gluconeogenesis, and enhancing immune systems. These findings provide a basis for understanding molecular responses by HS and the possible benefits of dietary BT supplementation in broiler chickens exposed to HS.

Keywords

Acknowledgement

We also thank the BT research facility center, Chung-Ang University.

References

  1. He SP, Arowolo MA, Medrano RF, et al. Impact of heat stress and nutritional interventions on poultry production. Worlds Poult Sci J 2018;74:647-64. https://doi.org/10.1017/S0043933918000727 
  2. Balnave D. Challenges of accurately defining the nutrient requirements of heat-stressed poultry. Poult Sci 2004;83:5-14. https://doi.org/10.1093/ps/83.1.5 
  3. St-Pierre NR, Cobanov B, Schnitkey G. Economic losses from heat stress by US livestock industries. J Dairy Sci 2003;86:E52-77. https://doi.org/10.3168/jds.S0022-0302(03)74040-5 
  4. Lin H, Du R, Gu XH, Li FC, Zhang ZY. A study on the plasma biochemical indices of heat-stressed broilers. Asian-Australas J Anim Sci 2000;13:1210-8. https://doi.org/10.5713/ajas.2000.1210 
  5. Lan PTN, Sakamoto M, Benno Y. Effects of two probiotic Lactobacillus strains on jejunal and cecal microbiota of broiler chicken under acute heat stress condition as revealed by molecular analysis of 16S rRNA genes. Microbiol Immunol 2004;48:917-29. https://doi.org/10.1111/j.1348-0421.2004.tb03620.x
  6. Kucuk O, Sahin N, Sahin K. Supplemental zinc and vitamin A can alleviate negative effects of heat stress in broiler chickens. Biol Trace Elem Res 2003;94:225-35. https://doi.org/10.1385/BTER:94:3:225 
  7. Saeed M, Babazadeh D, Naveed M, Arain MA, Hassan FU, Chao S. Reconsidering betaine as a natural anti-heat stress agent in poultry industry: A review. Trop Anim Health Prod 2017;49:1329-38. https://doi.org/10.1007/s11250-017-1355-z
  8. Al-Sagan AA, Al-Abdullatif A, Hussein EOS, et al. Effects of betaine supplementation on live performance, selected blood parameters, and expression of water channel and stress-related mRNA transcripts of delayed placement broiler chicks. Front Vet Sci 2021;7:632101. https://doi.org/10.3389/fvets.2020.632101 
  9. Ratriyanto A, Mosenthin R. Osmoregulatory function of betaine in alleviating heat stress in poultry. J Anim Physiol Anim Nutr 2018;102:1634-50. https://doi.org/10.1111/jpn.12990 
  10. Xie J, Tang L, Lu L, et al. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus). PloS One 2014;9:e102204. https://doi.org/10.1371/journal.pone.0102204 
  11. Jastrebski SF, Lamont SJ, Schmidt CJ. Chicken hepatic response to chronic heat stress using integrated transcriptome and metabolome analysis. PloS One 2017;12:e0181900. https://doi.org/10.1371/journal.pone.0181900 
  12. Zaefarian F, Abdollahi MR, Cowieson A, Ravindran V. Avian liver: the forgotten organ. Animals 2019;9:63. https://doi.org/10.3390/ani9020063 
  13. Kim DY, Lim B, Kim J, Kil DY. Integrated transcriptome analysis for the hepatic and jejunal mucosa tissues of broiler chickens raised under heat stress conditions. J Anim Sci Biotechnol 2022;13:79. https://doi.org/10.1186/s40104-022-00734-y 
  14. Yang Z, Yang HM, Gong DQ, et al. Transcriptome analysis of hepatic gene expression and DNA methylation in methionine- and betaine-supplemented geese (Anser cygnoides domesticus). Poult Sci 2018;97:3463-77. https://doi.org/10.3382/ps/pey242 
  15. Aviagen. Ross 308 broiler: nutrition specifications. Huntsville, AL, USA: Aviagen Inc; 2018. 
  16. Kim DY, Kim JH, Choi WJ, Han GP, Kil DY. Comparative effects of dietary functional nutrients on growth performance, meat quality, immune responses, and stress biomarkers in broiler chickens raised under heat stress conditions. Anim Biosci 2021;34:1839-48. https://doi.org/10.5713/ab.21.0230 
  17. Lim B, Kim S, Lim K, et al. Integrated time-serial transcriptome networks reveal common innate and tissue-specific adaptive immune responses to PRRSV infection. Vet Res 2020;51:128. https://doi.org/10.1186/s13567-020-00850-5 
  18. Ensembl. Gallus_gallus - Ensembl genome browser 105 [internet]. Ensembl; c2023 [cited 2021 Jan 19]. Available from: http://asia.ensembl.org/Gallus_gallus/Info/Index 
  19. Wasti S, Sah N, Mishra B. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals 2020;10:1266. https://doi.org/10.3390/ani10081266 
  20. Habashy WS, Milfort MC, Adomako K, Attia YA, Rekaya R, Aggrey SE. Effect of heat stress on amino acid digestibility and transporters in meat-type chickens. Poult Sci 2017;96:2312-9. https://doi.org/10.3382/ps/pex027 
  21. Habashy WS, Milfort MC, Fuller AL, Attia YA, Rekaya R, Aggrey SE. Effect of heat stress on protein utilization and nutrient transporters in meat-type chickens. Int J Biometeorol 2017;61:2111-8. https://doi.org/10.1007/s00484-017-1414-1 
  22. Bortoluzzi A, Furini F, Scire CA. Osteoarthritis and its management-epidemiology, nutritional aspects and environmental factors. Autoimmun Rev 2018;17:1097-104. https://doi.org/10.1016/j.autrev.2018.06.002 
  23. Ji FJ, Wang LX, Yang HS, Hu A, Yin YL. Review: The roles and functions of glutamine on intestinal health and performance of weaning pigs. Animal 2019;13:2727-35. https://doi.org/10.1017/S1751731119001800 
  24. Farag MR, Alagawany M, El-Hack MEA, et al. Role of chromium in poultry nutrition and health: Beneficial applications and toxic effects. Int J Pharmacol 2017;13:907-15. https://doi.org/10.3923/ijp.2017.907.915 
  25. Kim JH, Lee HK, Yang TS, Kang HK, Kil DY. Effect of different sources and inclusion levels of dietary fat on productive performance and egg quality in laying hens raised under hot environmental conditions. Asian-Australas J Anim Sci 2019;32:1407-13. https://doi.org/10.5713/ajas.19.0063 
  26. Metzler-Zebeli BU, Eklund M, Mosenthin R. Impact of osmoregulatory and methyl donor functions of betaine on intestinal health and performance in poultry. Worlds Poult Sci J 2009;65:419-42. https://doi.org/10.1017/S0043933909000300 
  27. Kang S, Kim D, Lee S, et al. An acute, rather than progressive, increase in temperature-humidity index has severe effects on mortality in laying hens. Front Vet Sci 2020;7: 568093. https://doi.org/10.3389/fvets.2020.568093 
  28. Barnes DM, Song Z, Klasing KC, Bottje W. Protein metabolism during an acute phase response in chickens. Amino Acids 2002;22:15-26. https://doi.org/10.1007/s726-002-8198-6 
  29. Lara LJ, Rostagno MH. Impact of heat stress on poultry production. Animals 2013;3:356-69. https://doi.org/10.3390/ani3020356 
  30. Dubrez L, Causse S, Borges Bonan N, Dumetier B, Garrido C. Heat-shock proteins: Chaperoning DNA repair. Oncogene 2020;39:516-29. https://doi.org/10.1038/s41388-019-1016-y 
  31. Bochman ML, Schwacha A. The Mcm2-7 complex has in vitro helicase activity. Mol Cell 2008;31:287-93. https://doi.org/10.1016/j.molcel.2008.05.020 
  32. Mori Y, Inoue Y, Taniyama Y, Tanaka S, Terada Y. Phosphorylation of the centrosomal protein, Cep169, by Cdk1 promotes its dissociation from centrosomes in mitosis. Biochem Biophys Res Commun 2015;468:642-6. https://doi.org/10.1016/j.bbrc.2015.11.004 
  33. Li J, Poolman RA, Brooks G. Role of G1 phase cyclins and cyclin-dependent kinases during cardiomyocyte hypertrophic growth in rats. Am J Physiol Heart Circ Physiol 1998;275: H814-22. https://doi.org/10.1152/ajpheart.1998.275.3.H814 
  34. Zhang Y, Morar M, Ealick SE. Structural biology of the purine biosynthetic pathway. Cell Mol Life Sci 2008;65:3699-724. https://doi.org/10.1007/s00018-008-8295-8 
  35. Hille R, Nishino T. Xanthine oxidase and xanthine dehydrogenase. FASEB J 1995;9:995-1003. https://doi.org/10.1096/fasebj.9.11.7649415 
  36. Venkatachalam KV. Human 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthase: Biochemistry, molecular biology and genetic deficiency. IUBMB Life 2003;55:1-11. https://doi.org/10.1080/1521654031000072148 
  37. Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: Essential components in cyclic nucleotide signaling. Annu Rev Biochem 2007;76:481-511. https://doi.org/10.1146/annurev.biochem.76.060305.150444 
  38. Traut TW. Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 1994;140:1-22. https://doi.org/10.1007/BF00928361 
  39. Tang Z, Ye W, Chen H, et al. Role of purines in regulation of metabolic reprogramming. Purinergic Signal 2019;15:423-38. https://doi.org/10.1007/s11302-019-09676-z 
  40. Nedergaard S, Bolam JP, Greenfield SA. Facilitation of a dendritic calcium conductance by 5-hydroxytryptamine in the substantia nigra. Nature 1988;333:174-7. https://doi.org/10.1038/333174a0 
  41. Calder PC. Very long-chain n-3 fatty acids and human health: Fact, fiction and the future. Proc Nutr Soc 2018;77:52-72. https://doi.org/10.1017/S0029665117003950 
  42. Funk CD. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science 2001;294:1871-5. https://doi.org/10.1126/science.294.5548.1871 
  43. Liu L, Liu X, Cui H, Liu R, Zhao G, Wen J. Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens. BMC Genomics 2019;20:863. https://doi.org/10.1186/s12864-019-6221-0 
  44. McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system-from concept to molecular analysis. Eur J Biochem 1997;244:1-14. https://doi.org/10.1111/j.1432-1033.1997.00001.x 
  45. Zhang H, Wang S, Wang Z, et al. A genome-wide scan of selective sweeps in two broiler chicken lines divergently selected for abdominal fat content. BMC Genomics 2012;13:704. https://doi.org/10.1186/1471-2164-13-704 
  46. Muret K, Desert C, Lagoutte L, et al. Long noncoding RNAs in lipid metabolism: Literature review and conservation analysis across species. BMC Genomics 2019;20:882. https://doi.org/10.1186/s12864-019-6093-3 
  47. Wang G, Kim WK, Cline MA, Gilbert ER. Factors affecting adipose tissue development in chickens: A review. Poult Sci 2017;96:3687-99. https://doi.org/10.3382/ps/pex184 
  48. Saunderson CL, Mackinlay J. Changes in body-weight, composition and hepatic enzyme activities in response to dietary methionine, betaine and choline levels in growing chicks. Br J Nutr 1990;63:339-49. https://doi.org/10.1079/BJN19900120 
  49. Zhan Y, Su H, An W. Glycosyltransferases and non-alcoholic fatty liver disease. World J Gastroenterol 2016;22:2483-93. https:// doi.org/10.3748/wjg.v22.i8.2483 
  50. D'Andre HC, Paul W, Shen X, et al. Identification and characterization of genes that control fat deposition in chickens. J Anim Sci Biotechnol 2013;4:43. https://doi.org/10.1186/2049-1891-4-43 
  51. Lee M, Park H, Heo JM, Choi HJ, Seo S. Multi-tissue transcriptomic analysis reveals that L-methionine supplementation maintains the physiological homeostasis of broiler chickens than D-methionine under acute heat stress. Plos One 2021;16:e0246063. https://doi.org/10.1371/journal.pone.0246063 
  52. Zhang L, Li P, Liu R, et al. The identification of loci for immune traits in chickens using a genome-wide association study. PloS One 2015;10:e0117269. https://doi.org/10.1371/journal.pone.0117269 
  53. Baggiolini M. Chemokines in pathology and medicine. J Intern Med 2001;250:91-104. https://doi.org/10.1046/j.1365-2796.2001.00867.x 
  54. Alam MS, Costales MG, Cavanaugh C, Williams K. Extracellular adenosine generation in the regulation of pro-inflammatory responses and pathogen colonization. Biomolecules 2015;5:775-92. https://doi.org/10.3390/biom5020775 
  55. Tapinos NI, Polihronis M, Thyphronitis G, Moutsopoulos HM. Characterization of the cysteine-rich secretory protein 3 gene as an early-transcribed gene with a putative role in the pathophysiology of Sjogren's syndrome. Arthritis Rheum 2002;46:215-22. https://doi.org/10.1002/1529-0131(200201)46:1<215::AID-ART10024>3.0.CO;2-M 
  56. Berndt A, Pieper J, Methner U. Circulating γδ T cells in response to Salmonellaenterica serovar Enteritidis exposure in chickens. Infect Immun 2006;74:3967-78. https://doi.org/10.1128/IAI.01128-05