DOI QR코드

DOI QR Code

오차교정모형을 활용한 일간 벌크선 해상운임 분석과 예측

Analysis and Forecasting of Daily Bulk Shipping Freight Rates Using Error Correction Models

  • 투고 : 2023.06.06
  • 심사 : 2023.06.30
  • 발행 : 2023.06.30

초록

본 연구는 오차교정모형을 활용해 건화물선과 유조선 일간 해상운임의 동태적 특성과 예측 정확도를 분석한다. 공적분된 시계열 자료의 오차를 계산하기 위해 본 연구는 공통 확률적 추세 모형(Common Stochastic Trend Model, CSTM 모형)과 벡터오차교정모형(Vector Error Correction Model, VECM 모형)을 활용한다. 먼저, CSTM 모형의 오차를 사용한 오차교정모형이 VECM 모형의 경우보다 교정계수(adjustment speed coefficient)가 경제학적 이론에 더 부합하는 결과를 보인다. 나아가 조정결정계수(adjR2) 측면에서도 CSTM 모형의 경우가 VECM 모형에 비해 모형 적합도가 큰 것으로 나타난다. 둘째, 예측 정확도를 판단하는 지표인 평균 절대 오차와 평균 절대 척도 오차를 살펴보면, CSTM 모형의 오차를 이용한 모형이 VECM 모형의 오차를 이용한 모형보다 총 15가지 경우 중에 12가지 경우에서 예측 정확도가 높은 것을 확인할 수 있다. 미래 연구주제로서 1) 두 가지 오차를 모두 활용하는 분석 및 예측 과제, 2) 원자재 및 에너지 자원 시장의 데이터를 추가하는 과제, 3) 오차항의 부호에 따라 교정계수를 다르게 추정하는 과제 등을 제시한다.

This study analyzes the dynamic characteristics of daily freight rates of dry bulk and tanker shipping markets and their forecasting accuracy by using the error correction models. In order to calculate the error terms from the co-integrated time series, this study uses the common stochastic trend model (CSTM model) and vector error correction model (VECM model). First, the error correction model using the error term from the CSTM model yields more appropriate results of adjustment speed coefficient than one using the error term from the VECM model. Furthermore, according to the adjusted determination coefficients (adjR2), the error correction model of CSTM-model error term shows more model fitness than that of VECM-model error term. Second, according to the criteria of mean absolute error (MAE) and mean absolute scaled error (MASE) which measure the forecasting accuracy, the results show that the error correction model with CSTM-model error term produces more accurate forecasts than that of VECM-model error term in the 12 cases among the total 15 cases. This study proposes the analysis and forecast tasks 1) using both of the CSTM-model and VECM-model error terms at the same time and 2) incorporating additional data of commodity and energy markets, and 3) differentiating the adjustment speed coefficients based the sign of the error term as the future research topics.

키워드

참고문헌

  1. 고병욱(2023), VAR과 VECM 모형을 이용한 해운시장 분석, 무역학회지, 발간 예정.
  2. 고병욱.안영균(2018), 글로벌 화학제품 운반선 운임에 영향을 미치는 주요 요인에 관한 연구, 해운물류연구, 제99호, 251-269. https://doi.org/10.37059/TJOSAL.2018.34.2.251
  3. 고병욱.최건우.안영균.황수진.김병주(2020), 시계열 분석을 통한 해운시장 분석 및 예측 연구, 한국해양수산개발원.
  4. 안영균.고병욱(2018a), 세계 건화물선 시장의 운임 결정 요인 분석, 국제상학, 33(4), 211-224.
  5. 안영균.고병욱(2018b), 초대형 원유운반선 운임에 영향을 미치는 주요 요인에 관한 연구, 해운물류연구, 제101호, 545-563.
  6. 안영균.고병욱(2018c), 컨테이너 운임에 미치는 영향요인 분석, 무역학회지, 43(5), 159-177. https://doi.org/10.22659/KTRA.2018.43.2.159
  7. Dickey, D. and W. A. Fuller(1979), Distribution of the Estimates for Autoregressive Time Series with a Unit Root, Journal of the American Statistical Association, 74, 427-431. https://doi.org/10.1080/01621459.1979.10482531
  8. Dickey, D. and W. A. Fuller(1981), The Likelihood Ratio statistics for Autoregressive Time Series with a Unit Root, Econometrica, 49, 1057-1072. https://doi.org/10.2307/1912517
  9. Engle, R. F. and C. W. J. Granger(1987), Co-integration and Error Correction: Representation, Estimation, and Testing, Econometrica, 55(2), 251-276. https://doi.org/10.2307/1913236
  10. Granger, C. W. J.(1981), Some Properties of Time Series Data and Their Use in Econometric Model Specification, Journal of Econometrics, 16(1), 121-130. https://doi.org/10.1016/0304-4076(81)90079-8
  11. Harvey, A. C.(1981), Time Series Models, Philip Allan and Humantities Press.
  12. Johansen, S.(1995), Likelihood-Based Inference in Cointegrated Vector Auto-Regressive Models, Oxford University Press.
  13. Kalman, R. E.(1960) A New Approach to Linear Filtering and Prediction Problems, Transactions ASME Journal of Basic Engineering, D82, 35-45. https://doi.org/10.1115/1.3662552
  14. Kavussanos, M. G., N. K. Nomikos(1999), The Forward Pricing Function of the Shipping Freight Futures Market, The Journal of Futures Market, 19(3), 353-376. https://doi.org/10.1002/(SICI)1096-9934(199905)19:3<353::AID-FUT6>3.0.CO;2-6
  15. Kim, C.-J. and C. R. Nelson(1999), State-Space Models with Regime Switching, MIT Press.
  16. Ko, B.-W.(2011a), An application of dynamic factor model to dry bulk market - Focusing on the analysis of synchronicity and idiosyncrasy in the sub-markets with different ship size -, KMI International Journal of Maritime Affairs and Fisheries 3(1), pp.069-082. https://doi.org/10.54007/ijmaf.2011.3.1.69
  17. Ko, B.-W.(2011b), Dynamics of dry bulk freight market: Through the lens of a common stochastic trend model, The Asian Journal of Shipping and Logistics, 27(3), pp.387-404. https://doi.org/10.1016/S2092-5212(11)80018-0
  18. Ko, B.-W,(2013), Analysis of term structure of in dry bulk freight market. Asian Journal of Shipping and Logistics. 29 (1), 1-22 https://doi.org/10.1016/j.ajsl.2013.05.001
  19. Ko. B.-W. and K. H. Kang(2021), Synchronicity in Dry Bulk Shipping Markets: A State-Space Model Approach, KMI International Journal of Maritime Affairs and Fisheries 13(1), pp.023-043. https://doi.org/10.54007/ijmaf.2021.13.1.23
  20. Mackinnon, J.G.(1996), Numerical Distribution Functions for Unit Root and Cointegration Tests, Journal of Applied Econometrics, 11, 601-618. https://doi.org/10.1002/(SICI)1099-1255(199611)11:6<601::AID-JAE417>3.0.CO;2-T
  21. MacKinnon, J.G., A. A. Haug and L. Michells(1999), Numerical Distribution Function of Likelihood Ratio Tests for Cointegration, Journal of Applied Econometrics, 14, 563-577. https://doi.org/10.1002/(SICI)1099-1255(199909/10)14:5<563::AID-JAE530>3.0.CO;2-R
  22. Sims, C. A. (1980), Macroeconomics and Reality, Econometrica, 48(1), 1-48. https://doi.org/10.2307/1912017
  23. UNCTAD(2017). Review of Maritime. Transport 2017, United Nations Publication.
  24. Veenstra, A. and P. Franses(1997), A Co-integration Approach to Forecasting Freight DRates in the Dry Bulk Shipping Sector, Transportation Research Part A, 31(6), 447-458. https://doi.org/10.1016/S0965-8564(97)00002-5