Acknowledgement
This work was supported by the Korea Environment Industry and Technology Institute through the Prospective Green Technology Innovation Project, funded by the Korea Ministry of Environment (2021003160013).
References
- F. Veglio and F. Beolchini, Removal of metals by biosorption: A review, Hydrometallurgy, 44, 301-316 (1997). https://doi.org/10.1016/S0304-386X(96)00059-X
- I. Ali and V. Gupta, Advances in water treatment by adsorption technology, Nat. Protoc., 1, 2661-2667 (2007). https://doi.org/10.1038/nprot.2006.370
- N. K. Lazaridis, G. Z. Kyzas, A. A. Vassiliou, and D. N. Bikiaris, Chitosan derivatives as biosorbents for basic dyes, Langmuir, 23, 7634-7643 (2007). https://doi.org/10.1021/la700423j
- T. A. Davis, B. Volesky, and R. H. S. F. Vieira, Sargassum seaweed as biosorbent for heavy metals, Water Res., 34, 4270-4278 (2000). https://doi.org/10.1016/S0043-1354(00)00177-9
- S. E. Bailey, T. J. Olin, R. M. Bricka, and D. D. Adrian, A review of potentially low-cost sorbents for heavy metals, Water Res., 33, 2469-2479 (1999). https://doi.org/10.1016/S0043-1354(98)00475-8
- K. Vijayaraghavan and Y.-S. Yun, Bacterial biosorbents and biosorption, Biotechnol. Adv., 26, 266-291 (2008). https://doi.org/10.1016/j.biotechadv.2008.02.002
- V. Gupta, P. Carrott, R. Carrott, and M. Suhas, Low-cost adsorbents: growing approach to wastewater treatment-A review, Crit. Rev. Environ. Sci. Technol., 39, 783-842 (2009). https://doi.org/10.1080/10643380801977610
- Y.-H. Wang, S.-H. Lin, and R.-S. Juang, Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents, J. Hazard. Mater., 102, 291-302 (2003). https://doi.org/10.1016/S0304-3894(03)00218-8
- U. Farooq, J. A. Kozinski, M. A. Khan, and M. Athar, Biosorption of heavy metal ions using wheat based biosorbents - A review of the recent literature, Bioresour. Technol., 101, 5043-5053 (2010). https://doi.org/10.1016/j.biortech.2010.02.030
- S. Saxena and S. F. D'Souza, Heavy metal pollution abatement using rock phosphate mineral, Environ. Int., 32, 199-202 (2006). https://doi.org/10.1016/j.envint.2005.08.011
- F. Fu and Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage., 92, 407-418 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011
- M. K. Jha, S. Joshi, R. K. Sharma, A. A. Kim, B. Pant, M. Park, and H. R. Pant, Surface modified activated carbons: Sustainable bio-based materials for environmental remediation, Nanomaterials, 11, 3140 (2021).
- Y. Chen, X. Bai, and Z. Ye, Recent progress in heavy metal ion decontamination based on metal-organic frameworks, Nanomaterials, 11, 1481 (2020).
- Z. Yuna, Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater, Environ. Eng. Sci., 33, 443-454 (2016). https://doi.org/10.1089/ees.2015.0166
- S. Mao and M. Gao, Functional organoclays for removal of heavy metal ions from water: A review, J. Mol. Liq., 334, 116143 (2021).
- G-R. Xu, Z-H. An, K. Xu, Q. Liu, R. Das, and H-L. Zhao, Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications, Coord. Chem. Rev., 427, 213554 (2021).
- X. Yang and Q. Xu, Bimetallic metal-organic frameworks for gas storage and separation, Cry. Grow. Design, 17, 1450-1455 (2017). https://doi.org/10.1021/acs.cgd.7b00166
- X. R. Li, X. C. Yang, H. G. Xue, H. Pang, and Q. Xu, Metal-organic frameworks as a platform for clean energy applications, EnergyChem, 2, 100027 (2020).
- H. Li, L. B. Li, Lin, W. Zhou, Z. J. Zhang, S. C. Xiang, and B. L. Chen, Porous metal-organic frameworks for gas storage and separation: Status and challenges, EnergyChem, 1, 100006 (2019).
- P. Samanta, A. V. Desai, S. Sharma, P. Chandra, and S. K. Ghosh, Selective recognition of Hg2+ ion in water by a functionalized metal- organic framework (MOF) based chemodosimeter, Inorg. Chem., 57, 2360-2364 (2018). https://doi.org/10.1021/acs.inorgchem.7b02426
- M. X. Wu and Y. W. Yang, Metal-organic framework (MOF)- based drug/cargo delivery and cancer therapy, Adv. Mater., 29, 1606134 (2017).
- F. Y. Yi, D. Chen, M. K. Wu, L. Han, and H. L. Jiang, Chemical sensors based on metal-organic frameworks, ChemPlusChem, 81, 675-690 (2016). https://doi.org/10.1002/cplu.201600137
- J. Castillo, V. Thijs, and C. Sofia, Understanding water adsorption in Cu-BTC metal-organic frameworks, J. Phys. Chem. C, 112, 15934-15939 (2008). https://doi.org/10.1021/jp806363w
- D. Saha, Z. Bao, F. Jia, and S. Deng, Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A, Environ. Sci. Technol., 44, 1820-1826 (2010). https://doi.org/10.1021/es9032309
- K. Tan, N. Nijem, P. Canepa, Q. Gong, J. Li, T. Thonhauser, and Y. J. Chabal, Stability and hydrolyzation of metal organic frameworks with paddle-wheel SBUs upon hydration, Chem. Mater., 24, 3153-3167 (2012). https://doi.org/10.1021/cm301427w
- J. H. Qiu, Y. Feng, X. F. Zhang, M. M. Jia, and J. F. Yao, Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms, J. Colloid Interface Sci., 499, 151-158 (2017). https://doi.org/10.1016/j.jcis.2017.03.101
- L. Pei, X. Zhao, B. Liu, Z. Li, and Y. Wei, Rationally tailoring pore and surface properties of metal-organic frameworks for boosting adsorption of Dy3+, ACS Appl. Mater. Interfaces, 13, 46763-46771 (2021). https://doi.org/10.1021/acsami.1c14302
- J. Ru, X. Wang, F. Wang, X. Cui, X. Du, and X. Lu, UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism, Ecotoxicol. Environ. Saf., 208, 111577 (2021).
- F. Ahmadijokani, H. Molavi, M. Rezakazemi, S. Tajahmadi, A. Bahi, F. Ko, T. M. Aminabhavi, J-R. Li, and M. Arjmand, UiO-66 metal-organic frameworks in water treatment: A critical review, Prog. Mater. Sci., 125, 100904
- M. Bergaoui, A. Nakhli, Y. Benguerba, M. Khalfaoui, A. Erto, F. E. Soetaredjo, S. Ismadji, and B. Ernst, Novel insights into the adsorption mechanism of methylene blue onto organobentonite: Adsorption isotherms modeling and molecular simulation, J. Mol. Liq., 272, 697-707 (2018). https://doi.org/10.1016/j.molliq.2018.10.001
- J. Pires, J. Juzkow, and M. L. Pinto, Amino acid modified montmorillonite clays as sustainable materials for carbon dioxide adsorption and separation, Colloids Surf. A Physicochem. Eng. Asp., 544, 105-110 (2018). https://doi.org/10.1016/j.colsurfa.2018.02.019
- M. Hajjizadeh, S. Ghammamy, H. Ganjidoust, and F. Farsad, Amino acid modified bentonite clay as an eco-friendly adsorbent for landfill leachate treatment, Pol. J. Environ. Stud., 29, 4089-4099 (2020). https://doi.org/10.15244/pjoes/114507
- C. Boahen, S. Wiafe, F. Owusu, and L. Bian, Adsorption of heavy metals from mine wastewater using amino-acid modified Montmorillonite, Sustainable Environment, 9, 2152590 (2023).
- H. Reinsch, B. Bueken, F. Vermoortele, I. Stassen, A. Lieb, K-P. Lillerud, and D. D. Vos, Green synthesis of zirconium-MOFs, CrystEngComm, 17, 4070-4074 (2015). https://doi.org/10.1039/C5CE00618J
- P. B. S. Rallapalli, S. S. Choi, H. Moradi, J. -K. Yang, J. -H. Lee, and J. H. Ha, Tris(2-benzimidazolyl)amine (NTB)-modified metal-organic framework: Preparation, characterization, and mercury ion removal studies, Water, 15, 2559 (2023).
- A. K. Rana, P. Bankar, Y. Kumar, M. A. More, D. J. Late, and P. M. Shirage, Synthesis of Ni-doped ZnO nanostructures by low-temperature wet chemical method and their enhanced field emission properties, RSC Adv., 6, 104318-104324 (2016). https://doi.org/10.1039/C6RA21190A
- F. Ragon, B. Campo, Q. Yang, C. Martineau, A. D. Wiersum, A. Lago, V. Guillerm, C. Hemsley, J. F. Eubank, M. Vishnuvarthan, F. Taulelle, P. Horcajada, A. Vimont, P. L. Llewellyn, M. Daturi, S. Devautour-Vinot, G. Maurin, C. Serre, T. Devic, and G. Clet, Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking: Structural features and sorption properties, J. Mater. Chem. A, 3, 3294 (2015).
- L. -F. Liao, C. -F. Lien, D. -L. Shieh, F. -C. Chen and J. -L. Lin. FTIR study of adsorption and photochemistry of amide on powdered TiO2 : Comparison of benzamide with acetamide, Phys. Chem. Chem. Phys., 4, 4584-4589 (2002). https://doi.org/10.1039/b204455m
- S. M. Ragheb, Phosphate removal from aqueous solution using slag and fly ash, HBRC J., 9, 270-275 (2013). https://doi.org/10.1016/j.hbrcj.2013.08.005
- N. Salman, B. Vijay, M. Jiri, W. Jakub, B. Promoda, and A. Azeem, Sorption properties of iron impregnated activated carbon web for removal of methylene blue from aqueous media, Fibers Polym., 17, 1245-1255 (2016). https://doi.org/10.1007/s12221-016-6423-x
- R. G. Pearson, Hard and soft acids and bases, J. Am. Chem. Soc., 85, 3533-3539 (1963). https://doi.org/10.1021/ja00905a001
- X. B. Luo, T. T. Shen, L. Ding, W. P. Zhong, J. F. Luo, and S. L. Luo, Novel thymine-functionalized MIL-101 prepared by post-synthesis and enhanced removal of Hg2+ from water, J. Hazard. Mater., 306, 313-322 (2016). https://doi.org/10.1016/j.jhazmat.2015.12.034
- T. S. Anirudhan, S. Jalajamony, and S. S. Sreekumari, Adsorption of heavy metal ions from aqueous solutions by amine and carboxylate functionalized bentonites, Appl. Clay Sci., 65-66, 67-71 (2012). https://doi.org/10.1016/j.clay.2012.06.005
- X. Y. Zhang, Q. C. Wang, S. Q. Zhang, X. J. Sun, and Z. S. Zhang, Stabilization/solidification (S/S) of mercury-contaminated hazardous wastes using thiol-functionalized zeolite and Portland cement J. Hazard. Mater., 168, 1575-1580 (2009). https://doi.org/10.1016/j.jhazmat.2009.03.050
- F. Kazemi, H. Younesi, A. A. Ghoreyshi, N. Bahramifar, and A. Heidari, Thiol-incorporated activated carbon derived from fir wood sawdust as an efficient adsorbent for the removal of mercury ion: Batch and fixed-bed column studies, Process Saf. Environ. Prot., 100, 22-35 (2016). https://doi.org/10.1016/j.psep.2015.12.006
- L. Aboutorabi, A. Morsali, E. Tahmasebi, and O. Buyukgungor, Metal-organic framework based on isonicotinate N-oxide for fast and highly efficient aqueous phase Cr (VI) adsorption, Inorg. Chem., 55, 5507-5513 (2016). https://doi.org/10.1021/acs.inorgchem.6b00522
- R. Dariush, Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube, J. Nanostruct. Chem., 3, 55-60 (2013). https://doi.org/10.1186/2193-8865-3-55
- N. Ouasfi, M. Zbair, S. Bouzikri, Z. Anfar, M. Bensitel, H. A. Ahsaine, E. Sabbard, and L. Khamliche, Selected pharmaceuticals removal using algae derived porous carbon: experimental, modeling and DFT theoretical insights, RSC Adv., 9, 9792 (2019).
- J. Wang, and X. Guo, Rethinking of the intraparticle diffusion adsorption kinetics model: Interpretation, solving methods and applications, Chemosphere, 309, 136732 (2022).