DOI QR코드

DOI QR Code

Glutamic Acid-Grafted Metal-Organic Framework: Preparation, Characterization, and Heavy Metal Ion Removal Studies

  • Received : 2023.08.16
  • Accepted : 2023.09.13
  • Published : 2023.10.10

Abstract

Fast industrial and agricultural expansion result in the production of heavy metal ions (HMIs). These are exceedingly hazardous to both humans and the environment, and the necessity to eliminate them from aqueous systems prompts the development of novel materials. In the present study, a UIO-66 (COOH)2 metal-organic framework (MOF) containing free carboxylic acid groups was post-synthetically modified with L-glutamic acid via the solid-solid reaction route. Pristine and glutamic acid-treated MOF materials were characterized in detail using several physicochemical techniques. Single-ion batch adsorption studies of Pb(II) and Hg(II) ions were carried out using pristine as well as amino acid-modified MOFs. We further examined parameters that influence removal efficiency, such as the initial concentration and contact time. The bare MOF had a higher ion adsorption capacity for Pb(II) (261.87 mg/g) than for Hg(II) ions (10.54 mg/g) at an initial concentration of 150 ppm. In contrast, an increased Hg(II) ion adsorption capacity was observed for the glutamic acid-modified MOF (80.6 mg/g) as compared to the bare MOF. The Hg(II) ion adsorption capacity increased by almost 87% after modification with glutamic acid. Fitting results of isotherm and kinetic data models indicated that the adsorption of Pb(II) on both pristine and glutamic acid-modified MOFs was due to surface complexation of Pb(II) ions with available -COOH groups (pyromellitic acid). Adsorption of Hg(II) on the glutamic acid-modified MOF was attributed to chelation, in which glutamic acid grafted onto the surface of the MOF formed chelates with Hg(II) ions.

Keywords

Acknowledgement

This work was supported by the Korea Environment Industry and Technology Institute through the Prospective Green Technology Innovation Project, funded by the Korea Ministry of Environment (2021003160013).

References

  1. F. Veglio and F. Beolchini, Removal of metals by biosorption: A review, Hydrometallurgy, 44, 301-316 (1997). https://doi.org/10.1016/S0304-386X(96)00059-X
  2. I. Ali and V. Gupta, Advances in water treatment by adsorption technology, Nat. Protoc., 1, 2661-2667 (2007). https://doi.org/10.1038/nprot.2006.370
  3. N. K. Lazaridis, G. Z. Kyzas, A. A. Vassiliou, and D. N. Bikiaris, Chitosan derivatives as biosorbents for basic dyes, Langmuir, 23, 7634-7643 (2007). https://doi.org/10.1021/la700423j
  4. T. A. Davis, B. Volesky, and R. H. S. F. Vieira, Sargassum seaweed as biosorbent for heavy metals, Water Res., 34, 4270-4278 (2000). https://doi.org/10.1016/S0043-1354(00)00177-9
  5. S. E. Bailey, T. J. Olin, R. M. Bricka, and D. D. Adrian, A review of potentially low-cost sorbents for heavy metals, Water Res., 33, 2469-2479 (1999). https://doi.org/10.1016/S0043-1354(98)00475-8
  6. K. Vijayaraghavan and Y.-S. Yun, Bacterial biosorbents and biosorption, Biotechnol. Adv., 26, 266-291 (2008). https://doi.org/10.1016/j.biotechadv.2008.02.002
  7. V. Gupta, P. Carrott, R. Carrott, and M. Suhas, Low-cost adsorbents: growing approach to wastewater treatment-A review, Crit. Rev. Environ. Sci. Technol., 39, 783-842 (2009). https://doi.org/10.1080/10643380801977610
  8. Y.-H. Wang, S.-H. Lin, and R.-S. Juang, Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents, J. Hazard. Mater., 102, 291-302 (2003). https://doi.org/10.1016/S0304-3894(03)00218-8
  9. U. Farooq, J. A. Kozinski, M. A. Khan, and M. Athar, Biosorption of heavy metal ions using wheat based biosorbents - A review of the recent literature, Bioresour. Technol., 101, 5043-5053 (2010). https://doi.org/10.1016/j.biortech.2010.02.030
  10. S. Saxena and S. F. D'Souza, Heavy metal pollution abatement using rock phosphate mineral, Environ. Int., 32, 199-202 (2006). https://doi.org/10.1016/j.envint.2005.08.011
  11. F. Fu and Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage., 92, 407-418 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011
  12. M. K. Jha, S. Joshi, R. K. Sharma, A. A. Kim, B. Pant, M. Park, and H. R. Pant, Surface modified activated carbons: Sustainable bio-based materials for environmental remediation, Nanomaterials, 11, 3140 (2021).
  13. Y. Chen, X. Bai, and Z. Ye, Recent progress in heavy metal ion decontamination based on metal-organic frameworks, Nanomaterials, 11, 1481 (2020).
  14. Z. Yuna, Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater, Environ. Eng. Sci., 33, 443-454 (2016). https://doi.org/10.1089/ees.2015.0166
  15. S. Mao and M. Gao, Functional organoclays for removal of heavy metal ions from water: A review, J. Mol. Liq., 334, 116143 (2021).
  16. G-R. Xu, Z-H. An, K. Xu, Q. Liu, R. Das, and H-L. Zhao, Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications, Coord. Chem. Rev., 427, 213554 (2021).
  17. X. Yang and Q. Xu, Bimetallic metal-organic frameworks for gas storage and separation, Cry. Grow. Design, 17, 1450-1455 (2017). https://doi.org/10.1021/acs.cgd.7b00166
  18. X. R. Li, X. C. Yang, H. G. Xue, H. Pang, and Q. Xu, Metal-organic frameworks as a platform for clean energy applications, EnergyChem, 2, 100027 (2020).
  19. H. Li, L. B. Li, Lin, W. Zhou, Z. J. Zhang, S. C. Xiang, and B. L. Chen, Porous metal-organic frameworks for gas storage and separation: Status and challenges, EnergyChem, 1, 100006 (2019).
  20. P. Samanta, A. V. Desai, S. Sharma, P. Chandra, and S. K. Ghosh, Selective recognition of Hg2+ ion in water by a functionalized metal- organic framework (MOF) based chemodosimeter, Inorg. Chem., 57, 2360-2364 (2018). https://doi.org/10.1021/acs.inorgchem.7b02426
  21. M. X. Wu and Y. W. Yang, Metal-organic framework (MOF)- based drug/cargo delivery and cancer therapy, Adv. Mater., 29, 1606134 (2017).
  22. F. Y. Yi, D. Chen, M. K. Wu, L. Han, and H. L. Jiang, Chemical sensors based on metal-organic frameworks, ChemPlusChem, 81, 675-690 (2016). https://doi.org/10.1002/cplu.201600137
  23. J. Castillo, V. Thijs, and C. Sofia, Understanding water adsorption in Cu-BTC metal-organic frameworks, J. Phys. Chem. C, 112, 15934-15939 (2008). https://doi.org/10.1021/jp806363w
  24. D. Saha, Z. Bao, F. Jia, and S. Deng, Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A, Environ. Sci. Technol., 44, 1820-1826 (2010). https://doi.org/10.1021/es9032309
  25. K. Tan, N. Nijem, P. Canepa, Q. Gong, J. Li, T. Thonhauser, and Y. J. Chabal, Stability and hydrolyzation of metal organic frameworks with paddle-wheel SBUs upon hydration, Chem. Mater., 24, 3153-3167 (2012). https://doi.org/10.1021/cm301427w
  26. J. H. Qiu, Y. Feng, X. F. Zhang, M. M. Jia, and J. F. Yao, Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms, J. Colloid Interface Sci., 499, 151-158 (2017). https://doi.org/10.1016/j.jcis.2017.03.101
  27. L. Pei, X. Zhao, B. Liu, Z. Li, and Y. Wei, Rationally tailoring pore and surface properties of metal-organic frameworks for boosting adsorption of Dy3+, ACS Appl. Mater. Interfaces, 13, 46763-46771 (2021). https://doi.org/10.1021/acsami.1c14302
  28. J. Ru, X. Wang, F. Wang, X. Cui, X. Du, and X. Lu, UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism, Ecotoxicol. Environ. Saf., 208, 111577 (2021).
  29. F. Ahmadijokani, H. Molavi, M. Rezakazemi, S. Tajahmadi, A. Bahi, F. Ko, T. M. Aminabhavi, J-R. Li, and M. Arjmand, UiO-66 metal-organic frameworks in water treatment: A critical review, Prog. Mater. Sci., 125, 100904
  30. M. Bergaoui, A. Nakhli, Y. Benguerba, M. Khalfaoui, A. Erto, F. E. Soetaredjo, S. Ismadji, and B. Ernst, Novel insights into the adsorption mechanism of methylene blue onto organobentonite: Adsorption isotherms modeling and molecular simulation, J. Mol. Liq., 272, 697-707 (2018). https://doi.org/10.1016/j.molliq.2018.10.001
  31. J. Pires, J. Juzkow, and M. L. Pinto, Amino acid modified montmorillonite clays as sustainable materials for carbon dioxide adsorption and separation, Colloids Surf. A Physicochem. Eng. Asp., 544, 105-110 (2018). https://doi.org/10.1016/j.colsurfa.2018.02.019
  32. M. Hajjizadeh, S. Ghammamy, H. Ganjidoust, and F. Farsad, Amino acid modified bentonite clay as an eco-friendly adsorbent for landfill leachate treatment, Pol. J. Environ. Stud., 29, 4089-4099 (2020). https://doi.org/10.15244/pjoes/114507
  33. C. Boahen, S. Wiafe, F. Owusu, and L. Bian, Adsorption of heavy metals from mine wastewater using amino-acid modified Montmorillonite, Sustainable Environment, 9, 2152590 (2023).
  34. H. Reinsch, B. Bueken, F. Vermoortele, I. Stassen, A. Lieb, K-P. Lillerud, and D. D. Vos, Green synthesis of zirconium-MOFs, CrystEngComm, 17, 4070-4074 (2015). https://doi.org/10.1039/C5CE00618J
  35. P. B. S. Rallapalli, S. S. Choi, H. Moradi, J. -K. Yang, J. -H. Lee, and J. H. Ha, Tris(2-benzimidazolyl)amine (NTB)-modified metal-organic framework: Preparation, characterization, and mercury ion removal studies, Water, 15, 2559 (2023).
  36. A. K. Rana, P. Bankar, Y. Kumar, M. A. More, D. J. Late, and P. M. Shirage, Synthesis of Ni-doped ZnO nanostructures by low-temperature wet chemical method and their enhanced field emission properties, RSC Adv., 6, 104318-104324 (2016). https://doi.org/10.1039/C6RA21190A
  37. F. Ragon, B. Campo, Q. Yang, C. Martineau, A. D. Wiersum, A. Lago, V. Guillerm, C. Hemsley, J. F. Eubank, M. Vishnuvarthan, F. Taulelle, P. Horcajada, A. Vimont, P. L. Llewellyn, M. Daturi, S. Devautour-Vinot, G. Maurin, C. Serre, T. Devic, and G. Clet, Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking: Structural features and sorption properties, J. Mater. Chem. A, 3, 3294 (2015).
  38. L. -F. Liao, C. -F. Lien, D. -L. Shieh, F. -C. Chen and J. -L. Lin. FTIR study of adsorption and photochemistry of amide on powdered TiO2 : Comparison of benzamide with acetamide, Phys. Chem. Chem. Phys., 4, 4584-4589 (2002). https://doi.org/10.1039/b204455m
  39. S. M. Ragheb, Phosphate removal from aqueous solution using slag and fly ash, HBRC J., 9, 270-275 (2013). https://doi.org/10.1016/j.hbrcj.2013.08.005
  40. N. Salman, B. Vijay, M. Jiri, W. Jakub, B. Promoda, and A. Azeem, Sorption properties of iron impregnated activated carbon web for removal of methylene blue from aqueous media, Fibers Polym., 17, 1245-1255 (2016). https://doi.org/10.1007/s12221-016-6423-x
  41. R. G. Pearson, Hard and soft acids and bases, J. Am. Chem. Soc., 85, 3533-3539 (1963). https://doi.org/10.1021/ja00905a001
  42. X. B. Luo, T. T. Shen, L. Ding, W. P. Zhong, J. F. Luo, and S. L. Luo, Novel thymine-functionalized MIL-101 prepared by post-synthesis and enhanced removal of Hg2+ from water, J. Hazard. Mater., 306, 313-322 (2016). https://doi.org/10.1016/j.jhazmat.2015.12.034
  43. T. S. Anirudhan, S. Jalajamony, and S. S. Sreekumari, Adsorption of heavy metal ions from aqueous solutions by amine and carboxylate functionalized bentonites, Appl. Clay Sci., 65-66, 67-71 (2012). https://doi.org/10.1016/j.clay.2012.06.005
  44. X. Y. Zhang, Q. C. Wang, S. Q. Zhang, X. J. Sun, and Z. S. Zhang, Stabilization/solidification (S/S) of mercury-contaminated hazardous wastes using thiol-functionalized zeolite and Portland cement J. Hazard. Mater., 168, 1575-1580 (2009). https://doi.org/10.1016/j.jhazmat.2009.03.050
  45. F. Kazemi, H. Younesi, A. A. Ghoreyshi, N. Bahramifar, and A. Heidari, Thiol-incorporated activated carbon derived from fir wood sawdust as an efficient adsorbent for the removal of mercury ion: Batch and fixed-bed column studies, Process Saf. Environ. Prot., 100, 22-35 (2016). https://doi.org/10.1016/j.psep.2015.12.006
  46. L. Aboutorabi, A. Morsali, E. Tahmasebi, and O. Buyukgungor, Metal-organic framework based on isonicotinate N-oxide for fast and highly efficient aqueous phase Cr (VI) adsorption, Inorg. Chem., 55, 5507-5513 (2016). https://doi.org/10.1021/acs.inorgchem.6b00522
  47. R. Dariush, Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube, J. Nanostruct. Chem., 3, 55-60 (2013). https://doi.org/10.1186/2193-8865-3-55
  48. N. Ouasfi, M. Zbair, S. Bouzikri, Z. Anfar, M. Bensitel, H. A. Ahsaine, E. Sabbard, and L. Khamliche, Selected pharmaceuticals removal using algae derived porous carbon: experimental, modeling and DFT theoretical insights, RSC Adv., 9, 9792 (2019).
  49. J. Wang, and X. Guo, Rethinking of the intraparticle diffusion adsorption kinetics model: Interpretation, solving methods and applications, Chemosphere, 309, 136732 (2022).