DOI QR코드

DOI QR Code

Comparative Study on Adsorption Properties of Carbons Derived from Lignin and Polymer/Lignin Composite Precursors

리그닌 및 고분자/리그닌 복합소재 탄화 생성물의 흡착 특성 비교

  • Young Soon Im (Graduate School of Hygiene and Aesthetic, Dongduk Women's University) ;
  • Ahyeon Jin (Department of Applied Chemistry, Dongduk Women's University) ;
  • Sun Young Park (Graduate School of Hygiene and Aesthetic, Dongduk Women's University) ;
  • Mijung Kim (Major of Health and beauty, Graduate School of Public Health, Changwon University) ;
  • Joonwon Bae (Graduate School of Hygiene and Aesthetic, Dongduk Women's University)
  • 임영순 (동덕여자대학교 대학원 보건향장학과) ;
  • 진아현 (동덕여자대학교 응용화학과) ;
  • 박선영 (동덕여자대학교 대학원 보건향장학과) ;
  • 김미정 (창원대학교 보건대학원 뷰티헬스전공) ;
  • 배준원 (동덕여자대학교 대학원 보건향장학과)
  • Received : 2023.06.16
  • Accepted : 2023.07.10
  • Published : 2023.10.10

Abstract

In this study, a carbon film derived from a polymer/lignin composite precursor was produced by a carbonization cycle with a controlled temperature profile. The feasibility of successful formation of the carbon film using the carbonization cycle was monitored. The adsorption behavior of the carbon film toward various molecules, such as nonpolar and polar organic molecules, and dyes was investigated using ultraviolet/visible (UV/Vis) spectroscopy compared with that of carbonized lignin. Cyclic voltammetry (CV) analysis proved that a robust carbon film was prepared by the carbonization cycle. It was also demonstrated that the carbonized lignin and carbon film showed adsorption capability toward all types of organic molecules, in particular organic dyes, owing to the carbonized lignin. This work provides important information for future relevant research.

본 연구에서는, 탄화가 가능한 고분자/리그닌 복합소재 필름을 형성한 후, 제어된 온도 프로파일(profile)을 갖는 탄화 공정을 통해 탄화 생성물을 얻는다. 탄화 공정이 리그닌의 탄화 생성물 및 탄소 필름에 미치는 영향을 파악하여 성공적인 탄화물 생산이 가능한지를 탐색하였다. 얻어진 탄소 필름이 다양한 분자들, 비극성 유기 분자, 극성 유기 분자, 염료 분자 등에 보여주는 흡착 특성을 리그닌의 탄화물과 비교하며 자외선/가시광선(UV/Vis) 분광기로 분석하였다. 순환전류법으로 분석한 결과 본 연구에서 활용한 탄화 과정을 통해 탄소 필름이 성공적으로 얻어졌음을 확인하였다. 다양한 흡착 실험 결과 얻어진 탄화 리그닌이 다양한 분자들에 대한 흡착이 가능함을 보여주었고, 특히 염료 분자에 대해 효과가 가장 높게 나타났다. 이는, 분자 크기가 큰 분자에 대해 흡착이 용이함을 암시한다. 복합소재 필름의 경우 도입된 고분자가 리그닌의 흡착 성능을 다소 약화시키는 것으로 나타났다. 이 연구는 금속 양이온에 대한 흡착 거동을 분석한 이전 결과로 함께 향후 연구에 대한 중요한 정보를 제공할 것이다.

Keywords

Acknowledgement

이 연구는 한국연구재단의 지원으로 수행되었습니다. (NRF-2021R1F1A1061939)

References

  1. L. Zhu and Z. Zhong, Effects of cellulose, hemicellulose and lignin on biomass pyrolysis kinetics, Korean J. Chem. Eng., 37, 1660-1668 (2020). https://doi.org/10.1007/s11814-020-0553-y
  2. P. K. Dikshit, H. B. Jun, and B. S. Kim, Biological conversion of lignin and its derivatives to fuels and chemicals, Korean J. Chem. Eng., 37, 387-401 (2020). https://doi.org/10.1007/s11814-019-0458-9
  3. S. Wang, L. Lyu, G. Sima, Y. Cui, B. Li, X. Zhang, and L. Gan, Optimization of fructose dehydration to 5-hydroxymethylfurfural catalyzed by SO3H-bearing lignin-derived ordered mesoporous carbon, Korean J. Chem. Eng., 36, 1042-1050 (2019). https://doi.org/10.1007/s11814-019-0281-3
  4. V. Ponnuchamy, O. Gordobil, R. Herrera Diaz, A. Sandak, and J. Sandak, Fractionation of lignin using organic solvents: A combined experimental and theoretical study, Int. J. Biological Macromol., 168, 792-805 (2021). https://doi.org/10.1016/j.ijbiomac.2020.11.139
  5. O. -N. Hur, S. Park, S. Park, B. H. Kang, C. -S. Lee, J. -Y. Hong, S. -H. Park, and J. Bae, A study on fabrication of polypyrrole@ lignin composite and electrical sensing and metal ion adsorption capabilities, Mater. Chem. Phys., 285, 126166 (2022).
  6. J. Bae, Preparation of carbon films from polyacrylonitrile@lignin composites and their electrical properties and adsorption behavior, Appl. Chem. Eng., 34, 106-110 (2023).
  7. E. Svinterikos, I. Zuburtikudis, and M. Al-Marzouqi, Electrospun lignin-derived carbon micro- and nanofibers : A review on precursors, properties, and applications, ACS Sustain. Chem. Eng., 8, 13868-13893 (2020). https://doi.org/10.1021/acssuschemeng.0c03246
  8. A. El Nemr, R. M. Aboughaly, A. El Sikaily, M. S. Masoud, M. S. Ramadan, and S. Ragab, Microporous-activated carbons of type I adsorption isotherm derived from sugarcane bagasse impregnated with zinc chloride, Carbon Lett., 32, 229-249 (2022). https://doi.org/10.1007/s42823-021-00270-1
  9. A. A. Ahmad, M. Al-Raggad, and N. Shareef, Production of activated carbon derived from agricultural by-products via microwave-induced chemical activation: A review, Carbon Lett., 31, 957-971 (2021). https://doi.org/10.1007/s42823-020-00208-z
  10. H. Yu, J. Wang, J. Yu, Y. Wang, and R. Chi, Adsorption performance and stability of the modified straws and their extracts of cellulose, lignin, and hemicellulose for Pb2+: pH effect, Arab. J. Chem., 13, 9019-9033 (2020). https://doi.org/10.1016/j.arabjc.2020.10.024
  11. H. Liu, S. Zhang, J. Yang, M. Ji, J. Yu, M. Wang, X. Chai, B. Yang, C. Zhu, and J. Xu, Preparation, stabilization and carbonization of a novel polyacrylonitrile-based carbon fiber precursor, Polymers, 11, 1150 (2019).
  12. J. Noh, S. Jekal, and C. -M. Yoon, Polyaniline-coated mesoporous carbon nanosheets with fast capacitive energy storage in symmetric supercapacitors, Adv. Sci., https://doi.org/10.1002/advs.202301923.