DOI QR코드

DOI QR Code

Recent Advances in the Development of Hydrogel-Based Functional Adsorbents

하이드로겔 기반 기능성 흡착제 개발기술 동향

  • Ju-Eon Jung (Department of Green Chemical Engineering, Sangmyung University) ;
  • Kang Song (Department of Civil, Environmental, and Biomedical Engineering, the Graduate School, Sangmyung University) ;
  • Sung-Min Kang (Future Environment and Energy Research Institute, Sangmyung University)
  • 정주언 (상명대학교 그린화학공학과) ;
  • 송강 (상명대학교 건설.환경.의생명공학과) ;
  • 강성민 (상명대학교 미래환경에너지연구소)
  • Received : 2023.08.29
  • Accepted : 2023.09.14
  • Published : 2023.10.10

Abstract

Water pollution is one of the serious global issues caused by expanding urbanization and industrialization. Over the last few decades, various adsorbents have been developed to improve water quality and address future challenges of water pollution. Among them, the development of hydrogel-based adsorbents has received significant attention due to their hydrophilic nature, 3D formation, high porosity, non-toxic properties, reusability, and multifunctionality. Therefore, this review provides various types and characterizations of hydrogel and summarizes recent progress in the use of hydrogel adsorbents for the removal of water contaminants. Further, we introduced the preparation of hydrogel-based adsorbents, their adsorption capacity, and the development of multifunctional adsorbents for discussing the future direction of advanced adsorbents.

무분별한 도시화와 산업화로 인해 발생된 수질오염은 국제적으로 심각한 문제 중 하나이다. 지난 몇십 년 동안, 수질 환경 개선과 앞으로의 수질오염으로부터 대처를 위해 다양한 흡착제가 개발되어 왔다. 이 중에서, 하이드로겔 기반 흡착제 개발은 친수성 성질을 바탕으로 3차원 구조를 형성하며 높은 다공성, 무독성, 재사용성, 그리고 다기능성 때문에 많은 관심이 집중되고 있다. 본 총설에서는 흡착제 개발을 수행함에 있어 하이드로겔의 종류 및 특성을 알아보고, 최신연구들을 소개하고자 한다. 추가적으로 하이드로겔 흡착제의 제조, 다양한 오염물질 제거능력, 그리고 다기능성 흡착제에 대해 소개함으로써 앞으로의 첨단 흡착제 개발방향에 대해 논의하고자 한다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2021R1F1A1050753)

References

  1. Shivam, R. Megha, V. Lakhani, S. Vala, S. Dharaskar, N. Reddy Paluvai, M. Kumar Sinha, and S. S. Jampa, Removal of heavy metals and dyes from its aqueous solution utilizing metal organic Frameworks (MOFs): Review, Mater. Today Proc., 77, 188-200 (2023). https://doi.org/10.1016/j.matpr.2022.11.193
  2. H. Zhao and Y. Li, Removal of heavy metal ion by floatable hydrogel and reusability of its waste material in photocatalytic degradation of organic dyes, J. Environ. Chem. Eng., 9, 105316 (2021).
  3. S. Khaliha, D. Jones, A. Kovtun, M. L. Navacchia, M. Zambianchi, M. Melucci, and V. Palermo, The removal efficiency of emerging organic contaminants, heavy metals and dyes: Intrinsic limits at low concentrations, Environ. Sci. Water Res. Technol., 9, 1558-1565 (2023). https://doi.org/10.1039/D2EW00644H
  4. W. S. Choi and H. J. Lee, Nanostructured materials for water purification: Adsorption of heavy metal ions and organic dyes, Polymers, 14, 2183 (2022).
  5. V. K. Gupta, I. Ali, T. A. Saleh, A. Nayak, and S. Agarwal, Chemical treatment technologies for waste-water recycling-an overview, RSC Adv., 2, 6380-6388 (2012). https://doi.org/10.1039/c2ra20340e
  6. P. Rauwel and E. Rauwel, Towards the extraction of radioactive cesium-137 from water via graphene/CNT and nanostructured prussian blue hybrid nanocomposites: A Review, Nanomaterials, 9, 682 (2019).
  7. A. Chakraborty, A. Pal, and B. B. Saha, A critical review of the removal of radionuclides from wastewater employing activated carbon as an adsorbent, Materials, 15, 8818 (2022).
  8. Y. Cao, L. Zhou, H. Ren, and H. Zou, Determination, separation and application of 137Cs: A review, Int. J. Environ. Res. Public Health, 19, 10183 (2022).
  9. A. Pohl, Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents, Water Air Soil Pollut., 231, 503 (2020).
  10. Y. Zhang and X. Duan, Chemical precipitation of heavy metals from wastewater by using the synthetical magnesium hydroxy carbonate, Water Sci. Technol., 81, 1130-1136 (2020). https://doi.org/10.2166/wst.2020.208
  11. Q. Chen, Z. Luo, C. Hills, G. Xue, and M. Tyrer, Precipitation of heavy metals from wastewater using simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide, Water Res., 43, 2605-2614 (2009). https://doi.org/10.1016/j.watres.2009.03.007
  12. C. Blocher, J. Dorda, V. Mavrov, H. Chmiel, N. K. Lazaridis, and K. A. Matis, Hybrid flotation-membrane filtration process for the removal of heavy metal ions from wastewater, Water Res., 37, 4018-4026 (2003). https://doi.org/10.1016/S0043-1354(03)00314-2
  13. D. Q. Cao, X. Wang, Q. H. Wang, X. M. Fang, J. Y. Jin, X. D. Hao, E. Iritani, and N. Katagiri, Removal of heavy metal ions by ultrafiltration with recovery of extracellular polymer substances from excess sludge, J. Membr. Sci., 606, 118103 (2020).
  14. K. C. Khulbe and T. Matsuura, Removal of heavy metals and pollutants by membrane adsorption techniques, Appl. Water Sci., 8, 1-30 (2018). https://doi.org/10.1007/s13201-017-0639-9
  15. S. Panimalar, M. Subash, M. Chandrasekar, R. Uthrakumar, C. Inmozhi, W. A. A. Onazi, A. M. A. Mohaimeed, T. W. Chen, J. Kennedy, M. Maaza, and K. Kaviyarasu, Reproducibility and long-term stability of Sn doped MnO2 nanostructures Practical photocatalytic systems and wastewater treatment applications, Chemosphere, 293, 133646 (2022).
  16. M. Shkir, B. Palanivel, A. Khan, M. Kumar, J. H. Chang, A. Mani, and S. AlFaify, Enhanced photocatalytic activities of facile auto-combustion synthesized ZnO nanoparticles for wastewater treatment: An impact of Ni doping, Chemosphere, 291, 132687 (2022).
  17. B. Hao, J. Guo, L. Zhang, and H. Ma, Cr-doped TiO2/CuO photocatalytic nanofilms prepared by magnetron sputtering for wastewater treatment, Ceram. Int., 48, 7106-7116 (2022). https://doi.org/10.1016/j.ceramint.2021.11.270
  18. J. Scaria, P. V. Nidheesh, and M. S. Kumar, Synthesis and applications of various bimetallic nanomaterials in water and wastewater treatment, J. Environ. Manage., 259, 11011 (2020).
  19. M. I. Khamis, T. H. Ibrahim, F. H. Jumean, Z. A. Sara, and B. A. Atallah, Cyclic sequential removal of alizarin red S dye and Cr(VI) ions using wool as a low-cost adsorbent, Processes, 8, 556-564 (2020). https://doi.org/10.3390/pr8050556
  20. A. Dabrowski, Z. Hubicki, P. Podkoscielny, and E. Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere, 56, 91-106 (2004). https://doi.org/10.1016/j.chemosphere.2004.03.006
  21. A. Bashir, L. A. Malik, S. Ahad, T. Manzoor, M. A. Bhat, G. N. Dar, and A. H. Pandith, Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods, Environ. Chem. Lett., 17, 729-754 (2019). https://doi.org/10.1007/s10311-018-00828-y
  22. K. Vaaramaa and J. Lehto, Removal of metals and anions from drinking water by ion exchange, Desalination, 155, 157-170 (2003). https://doi.org/10.1016/S0011-9164(03)00293-5
  23. C. Yang, Y. Qian, L. Zhang, and J. Feng, Solvent extraction process development and on-site trial-plant for phenol removal from industrial coal-gasification wastewater, Chem. Eng. J., 117, 179-185 (2006). https://doi.org/10.1016/j.cej.2005.12.011
  24. L. Zhang, P. Lv, Y. He, S. Li, K. Chen, and S. Yin, Purification of chlorine-containing wastewater using solvent extraction, J. Clean. Prod., 273, 122863 (2020).
  25. T. K. Tran, H. J. Leu, K. F. Chiu, and C. Y. Lin, Electrochemical treatment of heavy metal-containing wastewater with the removal of COD and heavy metal ions, J. Chin. Chem. Soc., 64, 493-502 (2017). https://doi.org/10.1002/jccs.201600266
  26. T. K. Tran, K. F. Chiu, C. Y. Lin, and H. J. Leu, Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process, Int. J. Hydrog., 42, 27741-27748 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.156
  27. H. Zhang, F. Xu, J. Xue, S. Chen, J. Wang, and Y. Yang, Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: Behavior and mechanism, Sci. Rep., 10, 6067 (2020).
  28. T. S. Vo, M. M. Hossain, H. M. Jeong, and K. Kim, Heavy metal removal applications using adsorptive membranes, Nano Converg., 7, 1-26 (2020). https://doi.org/10.1186/s40580-019-0212-3
  29. O. E. A. Salam, N. A. Reiad, and M. M. ElShafei, A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents, J. Adv. Res., 2, 297-303 (2011). https://doi.org/10.1016/j.jare.2011.01.008
  30. Z. Dong, Y. Wang, D. Wen, J. Peng, L. Zhao, and M. Zhai, Recent progress in environmental applications of functional adsorbent prepared by radiation techniques: A review, J. Hazard. Mater., 424, 126887 (2022).
  31. H. Musarurwa and N. T. Tavengwa, Recyclable polysaccharide/ stimuli-responsive polymer composites and their applications in water remediation, Carbohydr. Polym., 298, 120083 (2022).
  32. V. Krstic, T. Urosevic, and B. Pesovski, A review on adsorbents for treatment of water and wastewaters containing copper ions, Chem. Eng. Sci., 192, 273-287 (2018). https://doi.org/10.1016/j.ces.2018.07.022
  33. M. Delkash, B. E. Bakhshayesh, and H. Kazemian, Using zeolitic adsorbents to cleanup special wastewater streams: A review, Micropor. Mesopor. Mater., 214, 224-241 (2015). https://doi.org/10.1016/j.micromeso.2015.04.039
  34. M. Irannajad and H. Kamran Haghighi, Removal of heavy metals from polluted solutions by zeolitic adsorbents: A review, Environ. Process., 8, 7-35 (2021). https://doi.org/10.1007/s40710-020-00476-x
  35. S. Wang and Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J., 156, 11-24 (2010). https://doi.org/10.1016/j.cej.2008.07.014
  36. Suhas, P. J. M. Carrott, and M. M. L. R. Carrott, Lignin-from natural adsorbent to activated carbon: A review, Bioresour. Technol., 98, 2301-2312 (2007). https://doi.org/10.1016/j.biortech.2006.08.008
  37. S. Moosavi, C. W. Lai, S. Gan, G. Zamiri, O. Akbarzadeh Pivehzhani, and M. R. Johan, Application of efficient magnetic particles and activated carbon for dye removal from wastewater, ACS Omega, 5, 20684-20697 (2020). https://doi.org/10.1021/acsomega.0c01905
  38. K. Azam, N. Shezad, I. Shafiq, P. Akhter, F. Akhtar, F. Jamil, S. Shafique, Y. K. Park, and M. Hussain, A review on activated carbon modifications for the treatment of wastewater containing anionic dyes, Chemosphere, 306, 135566 (2022).
  39. S. Gu, X. Kang, L. Wang, E. Lichtfouse, and C. Wang, Clay mineral adsorbents for heavy metal removal from wastewater: A review, Environ. Chem. Lett., 17, 629-654 (2019). https://doi.org/10.1007/s10311-018-0813-9
  40. A. Kausar, M. Iqbal, A. Javed, K. Aftab, Z. i. H. Nazli, H. N. Bhatti, and S. Nouren, Dyes adsorption using clay and modified clay: A review, J. Mol. Liq., 256, 395-407 (2018). https://doi.org/10.1016/j.molliq.2018.02.034
  41. Momina, M. Shahadat, and S. Isamil, Regeneration performance of clay-based adsorbents for the removal of industrial dyes: A review, RSC Adv., 8, 24571-24587 (2018). https://doi.org/10.1039/C8RA04290J
  42. S. Rengaraj and S.-H. Moon, Kinetics of adsorption of Co(II) removal from water and wastewater by ion exchange resins, Water Res., 36, 1783-1793 (2002). https://doi.org/10.1016/S0043-1354(01)00380-3
  43. M. M. Hassan and C. M. Carr, A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents, Chemosphere, 209, 201-219 (2018). https://doi.org/10.1016/j.chemosphere.2018.06.043
  44. J. O. Ighalo, F. O. Omoarukhe, V. E. Ojukwu, K. O. Iwuozor, and C. A. Igwegbe, Cost of adsorbent preparation and usage in wastewater treatment: A review, Cleaner Chem. Eng., 3, 100042 (2022).
  45. L. Zhang, T. Su, Z. Luo, B. Xu, W. Yao, M. Zhou, W. Yang, and H. Xu, A graphene-based porous composite hydrogel for efficient heavy metal ions removal from wastewater, Sep. Purif. Technol., 305, 122484 (2023).
  46. X. F. Sun, B. Liu, Z. Jing, and H. Wang, Preparation and adsorption property of xylan/poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent, Carbohydr. Polym., 118, 16-23 (2015). https://doi.org/10.1016/j.carbpol.2015.03.003
  47. M. A. H. Badsha, M. Khan, B. Wu, A. Kumar, and I. M. C. Lo, Role of surface functional groups of hydrogels in metal adsorption: From performance to mechanism, J. Hazard. Mater., 408, 124464 (2021).
  48. V. Sinha and S. Chakma, Advances in the preparation of hydrogel for wastewater treatment: A concise review, J. Environ. Chem. Eng., 7, 103295 (2019).
  49. W. Wang, J. Hu, R. Zhang, C. Yan, L. Cui, and J. Zhu, A pH-responsive carboxymethyl cellulose/chitosan hydrogel for adsorption and desorption of anionic and cationic dyes, Cellulose, 28, 897-909 (2021). https://doi.org/10.1007/s10570-020-03561-4
  50. D. Tong, K. Fang, H. Yang, J. Wang, C. Zhou, and W. Yu, Efficient removal of copper ions using a hydrogel bead triggered by the cationic hectorite clay and anionic sodium alginate, Environ. Sci. Pollut. Res., 26, 16482-16492 (2019). https://doi.org/10.1007/s11356-019-04895-8
  51. S. Sethi, B. S. Kaith, M. Kaur, N. Sharma, and S. Khullar, A hydrogel based on dialdehyde carboxymethyl cellulose-gelatin and its utilization as a bio adsorbent, J. Chem. Sci., 132, 1-16 (2020). https://doi.org/10.1007/s12039-019-1689-3
  52. J. Yuan, C. Yi, H. Jiang, F. Liu, and G. J. Cheng, Direct ink writing of hierarchically porous cellulose/alginate monolithic hydrogel as a highly effective adsorbent for environmental applications, ACS Appl. Polym. Mater., 3, 699-709 (2021). https://doi.org/10.1021/acsapm.0c01002
  53. H. Mittal, A. A. Alili, P. P. Morajkar, and S. M. Alhassan, GO crosslinked hydrogel nanocomposites of chitosan/carboxymethyl cellulose-a versatile adsorbent for the treatment of dyes contaminated wastewater, Int. J. Biol. Macromol., 167, 1248-1261 (2021). https://doi.org/10.1016/j.ijbiomac.2020.11.079
  54. T. Jiao, H. Guo, Q. Zhang, Q. Peng, Y. Tang, X. Yan, and B. Li, Reduced graphene oxide-based silver nanoparticle-containing composite hydrogel as highly efficient dye catalysts for wastewater treatment, Sci. Rep., 5, 11873 (2015).
  55. S. Wu, J. Guo, Y. Wang, C. Huang, and Y. Hu, Facile preparation of magnetic sodium alginate/carboxymethyl cellulose composite hydrogel for removal of heavy metal ions from aqueous solution, J. Mater. Sci., 56, 13096-13107 (2021). https://doi.org/10.1007/s10853-021-06044-4
  56. E. S. A. Halim, Preparation of starch/poly(N,N-Diethylaminoethyl methacrylate) hydrogel and its use in dye removal from aqueous solutions, React. Funct. Polym., 73, 1531-1536 (2013). https://doi.org/10.1016/j.reactfunctpolym.2013.08.003
  57. H. Hou, R. Zhou, P. Wu, and L. Wu, Removal of Congo red dye from aqueous solution with hydroxyapatite/chitosan composite, Chem. Eng. J., 211, 336-342 (2012). https://doi.org/10.1016/j.cej.2012.09.100
  58. X. Li, X. Wang, T. Han, C. Hao, S. Han, and X. Fan, Synthesis of sodium lignosulfonate-guar gum composite hydrogel for the removal of Cu2+ and Co2+, Int. J. Biol. Macromol., 175, 459-472 (2021). https://doi.org/10.1016/j.ijbiomac.2021.02.018
  59. C. B. Godiya, S. M. Sayed, Y. Xiao, and X. Lu, Highly porous egg white/polyethyleneimine hydrogel for rapid removal of heavy metal ions and catalysis in wastewater, React. Funct. Polym., 149, 104509 (2020).
  60. S. Tang, J. Yang, L. Lin, K. Peng, Y. Chen, S. Jin, and W. Yao, Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal, Chem. Eng. J., 393, 124728 (2020).
  61. X. Zhang, I. Elsayed, C. Navarathna, G. T. Schueneman, and E. B. Hassan, Biohybrid hydrogel and aerogel from self-assembled nanocellulose and nanochitin as a high-efficiency adsorbent for water purification, ACS Appl. Mater. Interfaces, 11, 46714-46725 (2019). https://doi.org/10.1021/acsami.9b15139
  62. K. Kabiri, H. Omidian, M. J. Zohuriaan-Mehr, and S. Doroudiani, Superabsorbent hydrogel composites and nanocomposites: A review, Polym. Compos., 32, 277-289 (2011). https://doi.org/10.1002/pc.21046
  63. E. M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review, J. Adv. Res., 6, 105-121 (2015). https://doi.org/10.1016/j.jare.2013.07.006
  64. X. Liu, J. Liu, S. Lin, and X. Zhao, Hydrogel machines, Mater. Today, 36, 102-124 (2020). https://doi.org/10.1016/j.mattod.2019.12.026
  65. H. Oh, S. Kim, S. Lee, J. Ha, J. Lee, Y. Choi, Y. Lee, Y. Kim, Y. Seo, and Y. Yoon, Development of hydrogels to improve the safety of yukhoe (Korean beef tartare) by reducing psychrotrophic listeria monocytogenes cell counts on raw beef surface, Korean J. Food Sci. Anim. Resour., 38, 1189-1195 (2018). https://doi.org/10.5851/kosfa.2018.e50
  66. J. Zhu and R. E. Marchant, Design properties of hydrogel tissue-engineering scaffolds, Expert Rev. Med. Devices, 8, 607-626 (2011). https://doi.org/10.1586/erd.11.27
  67. N. Qiao, Y. Zhang, Y. Fang, H. Deng, D. Zhang, H. Lin, Y. Chen, K. T. Yong, and J. Xiong, Silk fabric decorated with thermo-sensitive hydrogel for sustained release of paracetamol, Macromol. Biosci., 22, 2200029 (2022).
  68. S. V. Vlierberghe, P. Dubruel, and E. Schacht, Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review, Biomacromolecules, 12, 1387-1408 (2011). https://doi.org/10.1021/bm200083n
  69. Y. Zhang, W. Zhu, B. Wang, and J. Ding, A novel microgel and associated post-fabrication encapsulation technique of proteins, J. Control. Release, 105, 260-268 (2005). https://doi.org/10.1016/j.jconrel.2005.04.001
  70. A. Doring, W. Birnbaum, and D. Kuckling, Responsive hydrogels- structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science, Chem. Soc. Rev., 42, 7391-7420 (2013). https://doi.org/10.1039/c3cs60031a
  71. Y. Qiu and K. Park, Environment-sensitive hydrogels for drug delivery, Adv. Drug Deliv. Rev., 53, 231-339 (2001).
  72. S. Sharma, A. Dua, and A. Malik, Polyaspartic acid based superabsorbent polymers, Eur. Polym. J., 59, 363-376 (2014). https://doi.org/10.1016/j.eurpolymj.2014.07.043
  73. D. Stern and H. Cui, Crafting polymeric and peptidic hydrogels for improved wound healing, Adv. Healthc. Mater., 8, 1900104 (2019).
  74. A. Pourjavadi, H. Salimi, M. S. Amini-Fazl, M. Kurdtabar, and A. R. Amini-Fazl, Optimization of synthetic conditions of a novel collagen-based superabsorbent hydrogel by Taguchi method and investigation of its metal ions adsorption, J. Appl. Polym. Sci., 102, 4878-4885 (2006). https://doi.org/10.1002/app.24860
  75. M. C. Villalobos, J. A. C. Rizo, D. A. C. Munguia, and N. G. B. Montemayor, Biobased hydrogels and their composite containing MgMOF74 for the removal of textile dyes and wastewater treatment, Water Environ. Res., 94, e10785 (2022).
  76. H. MacKova, D. Horak, E. Petrovsky, and J. Kovarova, Magnetic hollow poly(N-isopropylacrylamide-co-N,N'- methylenebisacrylamideco-glycidyl acrylate) particles prepared by inverse emulsion polymerization, Colloid Polym. Sci., 291, 205-213 (2013). https://doi.org/10.1007/s00396-012-2609-y
  77. F. Y. Chou, C. M. Shih, M. C. Tsai, W. Y. Chiu, and S. J. Lue, Functional acrylic acid as stabilizer for synthesis of smart hydrogel particles containing a magnetic Fe3O4 core, Polymer, 53, 2839-2846 (2012). https://doi.org/10.1016/j.polymer.2012.05.010
  78. R. A. Ramli, S. Hashim, and W. A. Laftah, Synthesis, characterization, and morphology study of poly(acrylamide-co-acrylic acid)- grafted-poly(styrene-co-methyl methacrylate) "raspberry" -shape like structure microgels by pre-emulsified semi-batch emulsion polymerization, J. Colloid Interface Sci., 391, 86-94 (2013). https://doi.org/10.1016/j.jcis.2012.09.047
  79. Y. Q. Xia, T. Y. Guo, M. D. Song, B. H. Zhang, and B. L. Zhang, Hemoglobin recognition by imprinting in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan, Biomacromolecules, 6, 2601-2606 (2005). https://doi.org/10.1021/bm050324l
  80. M. Annaka, T. Matsuura, M. Kasai, T. Nakahira, Y. Hara, and T. Okano, Preparation of comb-type N-isopropylacrylamide hydrogel beads and their application for size-selective separation media, Biomacromolecules, 4, 395-403 (2003). https://doi.org/10.1021/bm025697q
  81. D. Suzuki and S. Yamakawa, Hydrogel particles as a particulate stabilizer for dispersion polymerization, Langmuir, 28, 10629-10634 (2012). https://doi.org/10.1021/la301127q
  82. B. Gao, Y. C. Wu, Z. G. Zhang, J. J. Hua, K. D. Yao, and X. Hou, Poly(acrylamide-co-acrylic acid)/poly(vinyl pyrrolidone) polymer blends prepared by dispersion polymerization, J. Macromol. Sci., Part B: Phys., 47, 544-554 (2008). https://doi.org/10.1080/00222340801955495
  83. W. Shen, Y. Chang, G. Liu, H. Wang, A. Cao, and Z. An, Biocompatible, antifouling, and thermosensitive core-shell nanogels synthesized by RAFT aqueous dispersion polymerization, Macromolecules, 44, 2524-2530 (2011). https://doi.org/10.1021/ma200074n
  84. G. David, B. C. Simionescu, and A. C. Albertsson, Rapid deswelling response of poly((N-isopropylacrylamide)/poly(2-alkyl-2-oxazoline)/ poly(2-hydroxyethyl methacrylate hydrogels, Biomacromolecules, 9, 1678-1683 (2008). https://doi.org/10.1021/bm800215d
  85. X. Z. Zhang, G. M. Sun, and C. C. Chu, Temperature sensitive dendrite-shaped PNIPAAm/Dex-AI hybrid hydrogel particles: Formulation and properties, Eur. Polym. J., 40, 2251-2257 (2004). https://doi.org/10.1016/j.eurpolymj.2004.04.021
  86. M. M. Flake, P. K. Nguyen, R. A. Scott, L. R. Vandiver, R. K. Willits, and D. L. Elbert, Poly(ethylene glycol) microparticles produced by precipitation polymerization in aqueous solution, Biomacromolecules, 12, 844-850 (2011). https://doi.org/10.1021/bm1011695
  87. Y. Nemati, P. Zahedi, M. Baghdadi, and S. Ramezani, Microfluidics combined with ionic gelation method for production of nanoparticles based on thiol-functionalized chitosan to adsorb Hg (II) from aqueous solutions, J. Environ. Manage., 238, 166-177 (2019). https://doi.org/10.1016/j.jenvman.2019.02.124
  88. J.-E. Jung, K. Song, and S.-M. Kang, Development of a centrifugal microreactor for the generation of multicompartment alginate hydrogel, Appl. Chem. Eng., 34, 23-29 (2023).
  89. B. Park, S. M. Ghoreishian, Y. Kim, B. J. Park, S.-M. Kang, and Y. S. Huh, Dual-functional micro-adsorbents: Application for simultaneous adsorption of cesium and strontium, Chemosphere, 263, 128266 (2021).
  90. T. Han, L. Zhang, H. Xu, and J. Xuan, Factory-on-chip: Modularised microfluidic reactors for continuous mass production of functional materials, Chem. Eng. J., 326, 765-773 (2017). https://doi.org/10.1016/j.cej.2017.06.028
  91. Q. Fu, D. Xie, J. Ge, W. Zhang, and H. Shan, Negatively charged composite nanofibrous hydrogel membranes for high-performance protein adsorption, Nanomaterials, 12, 3500 (2022).
  92. B. Ding, Z. Wang, X. Wang, W. Yang, S. Wang, C. Li, H. Dai, and S. Tao, Sr2+ adsorbents produced by microfluidics, Colloids Surf. A Physicochem. Eng. Asp., 613, 126072 (2021).
  93. J. S. Gajda, H. S. Freeman, and A. Reife, Synthetic dyes based on environmental considerations. Part 2: Iron complexes formazan dyes, Dyes Pigments, 30, 1-20 (1996). https://doi.org/10.1016/0143-7208(95)00048-8
  94. N. Methneni, J. A. M. Gonzalez, A. Jaziri, H. B. Mansour, and M. F. Serrano, Persistent organic and inorganic pollutants in the effluents from the textile dyeing industries: Ecotoxicology appraisal via a battery of biotests, Environ. Res., 196, 110956 (2021).
  95. I. Kabdach, O. Tunay, and D. Orhon, Wastewater control and management in a leather tanning district, Water Sci. Technol., 40, 261-267 (1999).
  96. M. Farhan Hanafi and N. Sapawe, A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes, Mater. Today: Proc., 31, A141-A150 (2020). https://doi.org/10.1016/j.matpr.2021.01.258
  97. M. Bohgard and A.-K. Ekholm, A method for the characterization of the aerosols emitted from handling of dye pigments in the paint manufacturing industry, J. Aerosol Sci., 21, S733-S736 (1990). https://doi.org/10.1016/0021-8502(90)90344-W
  98. I. M. Banat, P. Nigam, D. Singh, and R. Marchant, Microbial decolorization of textile-dyecontaining effluents: A review, Bioresour. Technol., 58, 217-227 (1996). https://doi.org/10.1016/S0960-8524(96)00113-7
  99. E. Makhado, S. Pandey, P. N. Nomngongo, and J. Ramontja, Preparation and characterization of xanthan gum-cl-poly(acrylic acid)/o-MWCNTs hydrogel nanocomposite as highly effective re-usable adsorbent for removal of methylene blue from aqueous solutions, J. Colloid Interface Sci., 513, 700-714 (2018). https://doi.org/10.1016/j.jcis.2017.11.060
  100. S. Zhao, F. Zhou, L. Li, M. Cao, D. Zuo, and H. Liu, Removal of anionic dyes from aqueous solutions by adsorption of chitosan-based semi-IPN hydrogel composites, Compos. B: Eng., 43, 1570-1578 (2012). https://doi.org/10.1016/j.compositesb.2012.01.015
  101. H. Q. Le, Y. Sekiguchi, D. Ardiyanta, and Y. Shimoyama, CO2-activated adsorption: A new approach to dye removal by chitosan hydrogel, ACS Omega, 3, 14103-14110 (2018). https://doi.org/10.1021/acsomega.8b01825
  102. F. N. Muya, C. E. Sunday, and P. Baker, Environmental remediation of heavy metal ions from aqueous solution through hydrogel adsorption: A critical review, Water Sci. Technol., 73, 983-992 (2016). https://doi.org/10.2166/wst.2015.567
  103. R. Gong, J. Ye, W. Dai, X. Yan, J. Hu, X. Hu, S. Li, and H. Huang, Adsorptive removal of methyl orange and methylene blue from aqueous solution with finger-citron-residue-based activated carbon, Ind. Eng. Chem. Res., 52, 14297-14303 (2013). https://doi.org/10.1021/ie402138w
  104. Y. Kong, Y. Zhuang, Z. Han, J. Yu, B. Shi, K. Han, and H. Hao, Dye removal by eco-friendly physically cross-linked double network polymer hydrogel beads and their functionalized composites, J. Environ. Sci., 78, 81-91 (2019). https://doi.org/10.1016/j.jes.2018.07.006
  105. J. Liu, H. Chen, X. Shi, S. Nawar, J. G. Werner, G. Huang, M. Ye, D. A. Weitz, A. A. Solovev, and Y. Mei, Hydrogel microcapsules with photocatalytic nanoparticles for removal of organic pollutants, Environ. Sci. Nano, 7, 656-664 (2020). https://doi.org/10.1039/C9EN01108K
  106. N. Belhouchat, H. Z. Boudiaf, and C. Viseras, Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads, Appl. Clay Sci., 135, 9-15 (2017). https://doi.org/10.1016/j.clay.2016.08.031
  107. W. Maret, The metals in the biological periodic system of the elements: Concepts and conjectures, Int. J. Mol. Sci., 17, 1-8 (2016). https://doi.org/10.3390/ijms17010066
  108. J. Chronopoulos, C. Haidouti, A. C. Sereli, and I. Massas, Variations in plant and soil lead and cadmium content in urban parks in Athens, Greece, Sci. Total Environ., 196, 91-98 (1997). https://doi.org/10.1016/S0048-9697(96)05415-0
  109. M. Hasanpour and M. Hatami, Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study, Adv. Colloid. Interface Sci., 284, 102247 (2020).
  110. J. Kushwaha and R. Singh, Cellulose hydrogel and its derivatives: A review of application in heavy metal adsorption, Inorg. Chem. Commun., 152, 721 (2023).
  111. Z. Fu and S. Xi, The effects of heavy metals on human metabolism, Toxicol. Mech. Methods, 30, 167-176 (2020). https://doi.org/10.1080/15376516.2019.1701594
  112. P. N. Obasi and B. B. Akudinobi, Potential health risk and levels of heavy metals in water resources of lead-zinc mining communities of Abakaliki, southeast Nigeria, Appl. Water Sci., 10, 1-23 (2020). https://doi.org/10.1007/s13201-019-1058-x
  113. Y. Zhou, X. Hu, M. Zhang, X. Zhuo and J. Niu, Preparation and characterization of modified cellulose for adsorption of Cd(II), Hg(II), and acid fuchsin from aqueous solutions, Ind. Eng. Chem. Res., 52, 876-884 (2013). https://doi.org/10.1021/ie301742h
  114. Z. Ajji and A. M. Ali, Separation of copper ions from iron ions using PVA-g-(acrylic acid/N-vinyl imidazole) membranes prepared by radiation-induced grafting, J. Hazard. Mater., 173, 71-74 (2010). https://doi.org/10.1016/j.jhazmat.2009.08.049
  115. A. M. Atta, H. S. Ismail, H. M. Mohamed, and Z. M. Mohamed, Acrylonitrile/acrylamidoxime/2-acrylamido-2-methylpropane sulfonic acid-based hydrogels: Synthesis, characterization and their application in the removal of heavy metals, J. Appl. Polym. Sci., 122, 999-1011 (2011). https://doi.org/10.1002/app.34245
  116. Y. Bulut, G. Akcay, D. Elma, and I. E. Serhatli, Synthesis of clay-based superabsorbent composite and its sorption capability, J. Hazard. Mater., 171, 717-723 (2009). https://doi.org/10.1016/j.jhazmat.2009.06.067
  117. G. S. Chauhan, S. Chauhan, U. Sen, and D. Garg, Synthesis and characterization of acrylamide and 2-hydroxyethyl methacrylate hydrogels for use in metal ion uptake studies, Desalination, 243, 95-108 (2009). https://doi.org/10.1016/j.desal.2008.04.017
  118. A. G. Kilic, S. Malci, O. Celikbicak, N. Sahiner, and B. Salih, Gold recovery onto poly(acrylamide-allylthiourea) hydrogels synthesized by treating with gamma radiation, Anal. Chim. Acta, 547, 18-25 (2005). https://doi.org/10.1016/j.aca.2005.03.042
  119. O. Ozay, S. Ekici, N. Aktas, and N. Sahiner, P(4-vinyl pyridine) hydrogel use for the removal of UO2 2+ and Th4+ from aqueous environments, J. Environ. Manage., 92, 3121-3129 (2011). https://doi.org/10.1016/j.jenvman.2011.08.004
  120. G. Zhou, J. Luo, C. Liu, L. Chu, and J. Crittenden, Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents, Water Res., 131, 246-254 (2018). https://doi.org/10.1016/j.watres.2017.12.067
  121. Z. Feng, C. Feng, N. Chen, W. Lu, and S. Wang, Preparation of composite hydrogel with high mechanical strength and reusability for removal of Cu(II) and Pb(II) from water, Sep. Purif. Technol., 300, 121894 (2022).
  122. K. Buesseler, M. Aoyama, and M. Fukasawa, Impacts of the Fukushima nuclear power plants on marine radioactivity, Environ. Sci. Technol., 45, 9931-9935 (2011). https://doi.org/10.1021/es202816c
  123. F. Chen, J. Hu, Y. Takahashi, M. Yamada, M. S. Rahman, and G. Yang, Application of synchrotron radiation and other techniques in analysis of radioactive microparticles emitted from the Fukushima Daiichi Nuclear Power Plant accident-A review, J. Environ. Radioact., 196, 29-39 (2019). https://doi.org/10.1016/j.jenvrad.2018.10.013
  124. J. P. Christodouleas, R. D. Forrest, C. G. Ainsley, Z. Tochner, S. M. Hahn, and E. Glatstein, Short-term and long-Term health risks of nuclear-power-plant accidents, N. Engl. J. Med., 364, 2334-2341 (2011). https://doi.org/10.1056/NEJMra1103676
  125. B. Cordero, V. Gomez, A. E. P. Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan, and S. Alvarez, Covalent radii revisited, Dalton Trans., 2832-2838 (2008).
  126. D. Ding, Y. Zhao, S. Yang, W. Shi, Z. Zhang, Z. Lei, and Y. Yang, Adsorption of cesium from aqueous solution using agricultural residue-walnut shell: Equilibrium, kinetic and thermodynamic modeling studies, Water Res., 47, 2563-2571 (2013). https://doi.org/10.1016/j.watres.2013.02.014
  127. H. Mukai, A. Hirose, S. Motai, R. Kikuchi, K. Tanoi, T. M. Nakanishi, T. Yaita, and T. Kogure, Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima, Sci. Rep., 6, 21543 (2016).
  128. S.-M. Kang, M. Rethinasabapathy, S. K. Hwang, G. W. Lee, S. C. Jang, C. H. Kwak, S. R. Choe, and Y. S. Huh, Microfluidic generation of prussian blue-laden magnetic micro-adsorbents for cesium removal, Chem. Eng. J., 341, 218-226 (2018). https://doi.org/10.1016/j.cej.2018.02.025
  129. T. Huang, Z. Cao, J. Jin, L. Zhou, S. Zhang, and L. Liu, Hydroxyapatite nanoparticle functionalized activated carbon particle electrode that removes strontium from spiked soils in a unipolar three-dimensional electrokinetic system, J. Environ. Manage., 280, 111697 (2021).
  130. G. Gurboga and H. Tel, Preparation of TiO2-SiO2 mixed gel spheres for strontium adsorption, J. Hazard. Mater., 120, 135-142 (2005). https://doi.org/10.1016/j.jhazmat.2004.12.037
  131. D. V Marinin and G. N. Brown, Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters, Waste. Manag., 20, 545-553 (2000). https://doi.org/10.1016/S0956-053X(00)00017-9
  132. A. Ahmadpour, M. Zabihi, M. Tahmasbi, and T. R. Bastami, Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions, J. Hazard. Mater., 182, 552-556 (2010). https://doi.org/10.1016/j.jhazmat.2010.06.067
  133. M. Caccin, F. Giacobbo, M. D. Ros, L. Besozzi, and M. Mariani, Adsorption of uranium, cesium and strontium onto coconut shell activated carbon, J. Radioanal. Nucl. Chem., 297, 9-18 (2013). https://doi.org/10.1007/s10967-012-2305-x
  134. B. Park, J.-E. Jung, H. U. Lee, J. S. Bae, M. Rethinasabapathy, Y. S. Huh, and S.-M. Kang, Generation of controllable patterned nanofibrous networks by electrospinning lithography: Simultaneous detection and adsorption toward cesium Ions, ACS Sustain. Chem. Eng., 11, 3810-3819 (2023). https://doi.org/10.1021/acssuschemeng.2c06998
  135. K. G. Akpomie, S. Ghosh, M. Gryzenhout, and J. Conradie, One-pot synthesis of zinc oxide nanoparticles via chemical precipitation for bromophenol blue adsorption and the antifungal activity against filamentous fungi, Sci. Rep., 11, 8305 (2021).
  136. L. E. Lan, F. D. Reina, G. E. D. Seta, J. M. Meichtry, and M. I. Litter, Comparison between different technologies (zerovalent iron, coagulation-flocculation, adsorption) for arsenic treatment at high concentrations, Water, 15, 1481 (2023).
  137. E. Cermikli, F. Sen, E. Altiok, J. Wolska, P. Cyganowski, N. Kabay, M. Bryjak, M. Arda, and M. Yuksel, Performances of novel chelating ion exchange resins for boron and arsenic removal from saline geothermal water using adsorption-membrane filtration hybrid process, Desalination, 491, 114504 (2020).
  138. L. Cseri, F. Topuz, M. A. Abdulhamid, A. Alammar, P. M. Budd, and G. Szekely, Electrospun adsorptive nanofibrous membranes from ion exchange polymers to snare textile dyes from wastewater, Adv. Mater. Technol., 6, 200955 (2021).
  139. M. Harja, G. Buema, and D. Bucur, Recent advances in removal of Congo Red dye by adsorption using an industrial waste, Sci. Rep., 12, 6087 (2022).