DOI QR코드

DOI QR Code

Nonlinear viscous material model

  • Ivica Kozar (Faculty of Civil Engineering, University of Rijeka) ;
  • Ivana Ban (Faculty of Civil Engineering, University of Rijeka) ;
  • Ivan Zambon (Faculty of Civil Engineering, University of Rijeka)
  • 투고 : 2023.05.11
  • 심사 : 2023.07.21
  • 발행 : 2023.10.25

초록

We have developed a model for estimating the parameters of viscous materials from indirect tensile tests for asphalt. This is a simple Burger nonlinear rheological two-cell model or standard model. At the same time, we begin to develop a more versatile and complex multi-cell model. The simple model is validated using experimental load-displacement results from laboratory tests: The recorded displacements are used as input values and the measured force data are simulated with the model. The optimal model parameters are estimated using the Levenberg-Marquardt method and a very good agreement between the experimental results and the model calculations is shown. However, not all parts of the model are active in the loading phase of the experiment, so we extended the validation of the model to the simulation of the relaxation behaviour. In this stage, the other model parameters are activated and the simulation results are consistent with the literature. At this stage, we have estimated the parameters only for the two-cell uniaxial model, but further work will include results for the multi-cell model.

키워드

과제정보

This work was supported by project HRZZ 7926 "Separation of parameter influence in engineering modeling and parameter identification", project KK.01.1.1.04.0056 "Structure integrity in energy and transportation" and University of Rijeka grant 'uniri-tehnic-18-108', for which we gratefully acknowledge.

참고문헌

  1. Barman, M., Rouzbeh Ghabchi, R., Singh, D., Zaman, M. and Commuri, S. (2018), "An alternative analysis of indirect tensile test results for evaluating fatigue characteristics of asphalt mixes", Constr. Build. Mater., 166, 204-213. https://doi.org/10.1016/j.conbuildmat.2018.01.049.
  2. Hirsh, M.W., Smale, S. and Devaney, R.L. (2004), Differential Equations, Dynamical Systems and An Introduction to Chaos, Elsevier, Amsterdam.
  3. Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Vol. 160, Springer, Science & Business Media.
  4. Kozar, I. and Pranjic I. (2022), "Nonlinear model for analysis of asphalt mixtures", 10th International Congress of Croatian Society of Mechanics, Pula, September.
  5. Kozar, I. and Rukavina, T. (2019), "The effect of material density on load rate sensitivity in nonlinear viscoelastic material models", Arch. Appl. Mech., 89, 873-883. https://doi.org/10.1007/s00419-018-1448-9.
  6. Kozar, I., Bede, N., Mrakovcic, S. and Bozic, Z. (2022), "Verification of a fracture model for fiber reinforced concrete beams in bending", Eng. Fail. Anal., 138, 106378. https://doi.org/10.1016/j.engfailanal.2022.106378.
  7. Kozar, I., Ibrahimbegovic, A. and Rukavina, T. (2018), "Material model for load rate sensitivity", Couple. Syst. Mech., 7(2), 141-162. https://doi.org/10.12989/csm.2018.7.2.141.
  8. Kozar, I., Ozbolt, J. and Pecak, T. (2012), "Load-rate sensitivity in 1D non-linear viscoelastic model", Key Eng. Mater., 488-489, 731-734. https://doi.org/10.4028/www.scientific.net/KEM.488-489.731.
  9. Kozar, I., Toric Malic, N. and Rukavina, T. (2018), "Inverse model for pullout determination of steel fibers", Couple. Syst. Mech., 7(2), 197-209. https://doi.org/10.12989/csm.2018.7.2.197.
  10. Lemaitre, J. and Chaboche, L.J. (1994), Mechanics of Solid Materials, Cambridge University Press, Cambridge.
  11. Mackiewicz, P. and Szydlo, A. (2019), "Viscoelastic parameters of asphalt mixtures identified in static and dynamic tests", Mater., 12, 2084. https://doi.org/10.3390/ma12132084.
  12. Nikolic, M., Karavelic, E., Ibrahimbegovic, A. and Miscevic, P. (2018), "Lattice element models and their peculiarities", Arch. Comput. Meth. Eng., 25(3), 753-784. https://doi.org/10.1007/s11831-017-9210-y.
  13. Ornaghi, H.L. Jr., Almeida, J.H.S. Jr., Monticeli, F.M. and Neves, R.M. (2020), "Stress relaxation, creep, and recovery of carbon fiber non-crimp fabric composites", Compos. Part C, 3, 100051. https://doi.org/10.1016/j.jcomc.2020.100051.
  14. Simo, J. and Hughes, T. (1998), Computational Inelasticity, Springer, New York.
  15. Wolfram Research Inc., Mathematica (2023), https://www.wolfram.com/mathematica/
  16. Zielinski, P. (2019), "Indirect tensile test as a simple method for rut resistance evaluation of asphalt concrete", Arch. Civil Eng., 65(3), 31-43. https://doi.org/10.2478/ace-2019-0032.