Acknowledgement
This work was supported by project HRZZ 7926 "Separation of parameter influence in engineering modeling and parameter identification", project KK.01.1.1.04.0056 "Structure integrity in energy and transportation" and University of Rijeka grant 'uniri-tehnic-18-108', for which we gratefully acknowledge.
References
- Barman, M., Rouzbeh Ghabchi, R., Singh, D., Zaman, M. and Commuri, S. (2018), "An alternative analysis of indirect tensile test results for evaluating fatigue characteristics of asphalt mixes", Constr. Build. Mater., 166, 204-213. https://doi.org/10.1016/j.conbuildmat.2018.01.049.
- Hirsh, M.W., Smale, S. and Devaney, R.L. (2004), Differential Equations, Dynamical Systems and An Introduction to Chaos, Elsevier, Amsterdam.
- Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Vol. 160, Springer, Science & Business Media.
- Kozar, I. and Pranjic I. (2022), "Nonlinear model for analysis of asphalt mixtures", 10th International Congress of Croatian Society of Mechanics, Pula, September.
- Kozar, I. and Rukavina, T. (2019), "The effect of material density on load rate sensitivity in nonlinear viscoelastic material models", Arch. Appl. Mech., 89, 873-883. https://doi.org/10.1007/s00419-018-1448-9.
- Kozar, I., Bede, N., Mrakovcic, S. and Bozic, Z. (2022), "Verification of a fracture model for fiber reinforced concrete beams in bending", Eng. Fail. Anal., 138, 106378. https://doi.org/10.1016/j.engfailanal.2022.106378.
- Kozar, I., Ibrahimbegovic, A. and Rukavina, T. (2018), "Material model for load rate sensitivity", Couple. Syst. Mech., 7(2), 141-162. https://doi.org/10.12989/csm.2018.7.2.141.
- Kozar, I., Ozbolt, J. and Pecak, T. (2012), "Load-rate sensitivity in 1D non-linear viscoelastic model", Key Eng. Mater., 488-489, 731-734. https://doi.org/10.4028/www.scientific.net/KEM.488-489.731.
- Kozar, I., Toric Malic, N. and Rukavina, T. (2018), "Inverse model for pullout determination of steel fibers", Couple. Syst. Mech., 7(2), 197-209. https://doi.org/10.12989/csm.2018.7.2.197.
- Lemaitre, J. and Chaboche, L.J. (1994), Mechanics of Solid Materials, Cambridge University Press, Cambridge.
- Mackiewicz, P. and Szydlo, A. (2019), "Viscoelastic parameters of asphalt mixtures identified in static and dynamic tests", Mater., 12, 2084. https://doi.org/10.3390/ma12132084.
- Nikolic, M., Karavelic, E., Ibrahimbegovic, A. and Miscevic, P. (2018), "Lattice element models and their peculiarities", Arch. Comput. Meth. Eng., 25(3), 753-784. https://doi.org/10.1007/s11831-017-9210-y.
- Ornaghi, H.L. Jr., Almeida, J.H.S. Jr., Monticeli, F.M. and Neves, R.M. (2020), "Stress relaxation, creep, and recovery of carbon fiber non-crimp fabric composites", Compos. Part C, 3, 100051. https://doi.org/10.1016/j.jcomc.2020.100051.
- Simo, J. and Hughes, T. (1998), Computational Inelasticity, Springer, New York.
- Wolfram Research Inc., Mathematica (2023), https://www.wolfram.com/mathematica/
- Zielinski, P. (2019), "Indirect tensile test as a simple method for rut resistance evaluation of asphalt concrete", Arch. Civil Eng., 65(3), 31-43. https://doi.org/10.2478/ace-2019-0032.