Acknowledgement
The authors acknowledge financial support from the Slovenian Research Agency (research core funding No. P2-0182 entitled Development Evaluation).
References
- Bartosak, M. (2021), "Constitutive modelling for isothermal low-cycle fatigue and fatigue-creep of a martensitic steel", Mech. Mater., 162, 104032. https://doi.org/10.1016/j.mechmat.2021.104032.
- Bizal, A., Klemenc, J. and Fajdiga, M. (2015), "Modelling the fatigue life reduction of anAlSi9Cu3 alloy caused by macro-porosity", Eng. Comput., 31(2), 259-269. https://doi.org/10.1007/s00366-013-0345-7.
- Gharib, M., Ceccarelli, A., Lollini, P. and Bondavalli, A. (2022), "A cyber-physical-social approach for engineering functional safety requirements for automotive systems", J. Syst. Softw., 189, 111310. https://doi.org/10.1016/j.jss.2022.111310.
- Ghasemi, M., Falahatgar, S. and Mosto, T. (2022), "Mechanical and thermomechanical mesoscale analysis of multiple surface cracks in ceramic coatings based on the dem-fem coupling method", Int. J. Solid. Struct., 236-237, 111336. https://doi.org/10.1016/j.ijsolstr.2021.111336.
- Hajdo, E., Ibrahimbegovic, A. and Dolarevic, S. (2020), "Buckling analysis of complex structures with refined model built of frame and shell finite elements", Couple. Syst. Mech., 9(1), 29-46. https://doi.org/10.12989/csm.2020.9.1.029.
- Imamovic, I., Ljukovac, S. and Ibrahimbegovic, A. (2022), "Advanced approach to design of small wind turbine support structures", Couple. Syst. Mech., 11(6), 525-542. https://doi.org/10.12989/csm.2022.11.6.525.
- Li, H., Dong, S., Liu, J., Yu, Y., Wu, M. and Zhang, Z. (2019), "Finite element modeling of porous microstructures with random holes of different-shapes and sizes to predict their effective elastic behavior", Appl. Sci., 9(21), 4536. https://doi.org /10.3390/app9214536.
- Liao, D., Zhu, S.P., Correia, J.A., Jesus, A.M.D., Veljkovic, M. and Berto, F. (2022), "Fatigue reliability of wind turbines: historical perspectives, recent developments and future prospects", Renew. Energy, 200, 724-742. https://doi.org/10.1016/j.renene.2022.09.093.
- Nagode, M. and Fajdiga, M. (2007), "Coupled elastoplasticity and viscoplasticity under thermomemechanical loading", Fatig. Fract. Eng. Mater. Struct., 30(6), 510-519. https://doi.org/10.1111/j.1460-2695.2007.01121.x.
- Nagode, M. and Zingsheim, F. (2004), "An online algorithm for temperature influenced fatigue life estimation: Strain-life approach", Int. J. Fatig., 26(2), 155-161. https://doi.org/10.1016/S0142-1123(03)00107-5.
- Nagode, M., Klemenc, J., Oman, S. and Seruga, D. (2021), "A closed-form solution for temperature-dependent elastoplastic problems using the Prandtl operator approach", Commun. Nonlin. Sci. Numer. Simul., 99, 105839. https://doi.org/10.1016/j.cnsns.2021.105839.
- Osmond, P., Le, V.D., Morel, F., Bellett, D. and Saintier, N. (2018), "Effect of porosity on the fatigue strength of cast aluminium alloys: from the specimen to the structure", Procedia Eng., 213, 630-643. https://doi.org/10.1016/j.proeng.2018.02.059.
- Pagliaro, S., Aloisio, A., Alaggio, R. and Egidio, A.D. (2020), "Rigid block coupled with a 2 d.o.f. system: Numerical and experimental investigation", Couple. Syst. Mech., 9(6), 539-561. https://doi.org/10.12989/csm.2020.9.6.539.
- Pang, K. and Yuan, H. (2020), "Fatigue life assessment of a porous casting nickel-based superalloy based on fracture mechanics methodology", Int. J. Fatig., 136, 105575. https://doi.org/10.1016/j.ijfatigue.2020.105575.
- Polatov, A.M., Khaldjigitov, A.A. and Ikramov, A.M. (2020), "Algorithm of solving the problem of small elastoplastic deformation of fiber composites by FEM", Couple. Syst. Mech., 5, 305-321. https://doi.org/10.12989/acd.2020.5.3.305.
- Seruga, D. and Nagode, M. (2019), "A new approach to finite element modelling of cyclic thermomechanical stress-strain responses", Int. J. Mech. Sci., 164, 105139. https://doi.org/10.1016/j.ijmecsci.2019.105139.
- Seruga, D., Hansenne, E., Haesen, V. and Nagode, M. (2014), "Durability prediction of EN 1.4512 exhaust mufflers under thermomechanical loading", Int. J. Mech. Sci., 84, 199-207. https://doi.org/10.1016/j.ijmecsci.2014.04.004.
- Seruga, D., Klemenc, J., Oman, S. and Nagode, M. (2022a), "Elastoplastic response of a pipe bend using Prandtl operator approach in a finite element analysis", Procedia Struct. Integr., 35, 150-158. https://doi.org/10.1016/j.prostr.2021.12.059.
- Seruga, D., Klemenc, J., Oman, S. and Nagode, M. (2022b), "Structural finite element analysis using material model with prandtl operator approach", LCF9-Ninth International Conference on Low Cycle Fatigue, https://doi.org/10.48447/LCF9-2022-050.
- Tomazincic, D. and Klemenc, J. (2022), "Estimate of Coffin-Manson curve shift for the porous alloy AlSi9Cu3 based on numerical simulations of a porous material carried out by using the Taguchi array", Mater., 15(6), 2269. https://doi.org/10.3390/ma15062269.
- Tomazincic, D., Borovinsek, M., Ren, Z. and Klemenc, J. (2021), "Improved prediction of low-cycle fatigue life for high-pressure die-cast aluminium alloy AlSi9Cu3 with significant porosity", Int. J. Fatig., 144, 106061. https://doi.org/10.1016/j.ijfatigue.2020.106061.
- Zouambi, L., Serier, B. and Benamara, N. (2014), "Effect of cavity-defects interaction on the mechanical behavior of the bone cement", Adv. Mater. Res., 3, 35-45. https://doi.org/10.12989/amr.2014.3.1.035.