DOI QR코드

DOI QR Code

A coupled simulation of parametric porous microstructure and stress-strain behavior in mechanical components under variable cyclic loads

  • Domen Seruga (Faculty of Mechanical Engineering, University of Ljubljana) ;
  • Jernej Klemenc (Faculty of Mechanical Engineering, University of Ljubljana) ;
  • Simon Oman (Faculty of Mechanical Engineering, University of Ljubljana) ;
  • Marko Nagode (Faculty of Mechanical Engineering, University of Ljubljana)
  • Received : 2023.03.31
  • Accepted : 2023.05.17
  • Published : 2023.10.25

Abstract

A coupled algorithm is proposed which first considers the creation of porous structure of the material and then the simulations of response of mechanical components with porous structure to a variable load history. The simulations are carried out by the Prandtl operator approach in the finite element method (FEM) which enables structural simulations of mechanical components subjected to variable thermomechanical loads. Temperature-dependent material properties and multilinear kinematic hardening of the material can be taken into account by this approach. Several simulations are then performed for a tensile-compressive specimen made of a generic porous structure and mechanical properties of Aluminium alloy AlSi9Cu3. Variable mechanical load history has been applied to the specimens under constant temperature conditions. Comparison of the simulation results shows a considerable elastoplastic stress-strain response in the vicinity of pores whilst the surface of the gauge-length of the specimen remains in the elastic region of the material. Moreover, the distribution of the pore sizes seems more influential to the stress-strain field during the loading than their radial position in the gauge-length.

Keywords

Acknowledgement

The authors acknowledge financial support from the Slovenian Research Agency (research core funding No. P2-0182 entitled Development Evaluation).

References

  1. Bartosak, M. (2021), "Constitutive modelling for isothermal low-cycle fatigue and fatigue-creep of a martensitic steel", Mech. Mater., 162, 104032. https://doi.org/10.1016/j.mechmat.2021.104032.
  2. Bizal, A., Klemenc, J. and Fajdiga, M. (2015), "Modelling the fatigue life reduction of anAlSi9Cu3 alloy caused by macro-porosity", Eng. Comput., 31(2), 259-269. https://doi.org/10.1007/s00366-013-0345-7.
  3. Gharib, M., Ceccarelli, A., Lollini, P. and Bondavalli, A. (2022), "A cyber-physical-social approach for engineering functional safety requirements for automotive systems", J. Syst. Softw., 189, 111310. https://doi.org/10.1016/j.jss.2022.111310.
  4. Ghasemi, M., Falahatgar, S. and Mosto, T. (2022), "Mechanical and thermomechanical mesoscale analysis of multiple surface cracks in ceramic coatings based on the dem-fem coupling method", Int. J. Solid. Struct., 236-237, 111336. https://doi.org/10.1016/j.ijsolstr.2021.111336.
  5. Hajdo, E., Ibrahimbegovic, A. and Dolarevic, S. (2020), "Buckling analysis of complex structures with refined model built of frame and shell finite elements", Couple. Syst. Mech., 9(1), 29-46. https://doi.org/10.12989/csm.2020.9.1.029.
  6. Imamovic, I., Ljukovac, S. and Ibrahimbegovic, A. (2022), "Advanced approach to design of small wind turbine support structures", Couple. Syst. Mech., 11(6), 525-542. https://doi.org/10.12989/csm.2022.11.6.525.
  7. Li, H., Dong, S., Liu, J., Yu, Y., Wu, M. and Zhang, Z. (2019), "Finite element modeling of porous microstructures with random holes of different-shapes and sizes to predict their effective elastic behavior", Appl. Sci., 9(21), 4536. https://doi.org /10.3390/app9214536.
  8. Liao, D., Zhu, S.P., Correia, J.A., Jesus, A.M.D., Veljkovic, M. and Berto, F. (2022), "Fatigue reliability of wind turbines: historical perspectives, recent developments and future prospects", Renew. Energy, 200, 724-742. https://doi.org/10.1016/j.renene.2022.09.093.
  9. Nagode, M. and Fajdiga, M. (2007), "Coupled elastoplasticity and viscoplasticity under thermomemechanical loading", Fatig. Fract. Eng. Mater. Struct., 30(6), 510-519. https://doi.org/10.1111/j.1460-2695.2007.01121.x.
  10. Nagode, M. and Zingsheim, F. (2004), "An online algorithm for temperature influenced fatigue life estimation: Strain-life approach", Int. J. Fatig., 26(2), 155-161. https://doi.org/10.1016/S0142-1123(03)00107-5.
  11. Nagode, M., Klemenc, J., Oman, S. and Seruga, D. (2021), "A closed-form solution for temperature-dependent elastoplastic problems using the Prandtl operator approach", Commun. Nonlin. Sci. Numer. Simul., 99, 105839. https://doi.org/10.1016/j.cnsns.2021.105839.
  12. Osmond, P., Le, V.D., Morel, F., Bellett, D. and Saintier, N. (2018), "Effect of porosity on the fatigue strength of cast aluminium alloys: from the specimen to the structure", Procedia Eng., 213, 630-643. https://doi.org/10.1016/j.proeng.2018.02.059.
  13. Pagliaro, S., Aloisio, A., Alaggio, R. and Egidio, A.D. (2020), "Rigid block coupled with a 2 d.o.f. system: Numerical and experimental investigation", Couple. Syst. Mech., 9(6), 539-561. https://doi.org/10.12989/csm.2020.9.6.539.
  14. Pang, K. and Yuan, H. (2020), "Fatigue life assessment of a porous casting nickel-based superalloy based on fracture mechanics methodology", Int. J. Fatig., 136, 105575. https://doi.org/10.1016/j.ijfatigue.2020.105575.
  15. Polatov, A.M., Khaldjigitov, A.A. and Ikramov, A.M. (2020), "Algorithm of solving the problem of small elastoplastic deformation of fiber composites by FEM", Couple. Syst. Mech., 5, 305-321. https://doi.org/10.12989/acd.2020.5.3.305.
  16. Seruga, D. and Nagode, M. (2019), "A new approach to finite element modelling of cyclic thermomechanical stress-strain responses", Int. J. Mech. Sci., 164, 105139. https://doi.org/10.1016/j.ijmecsci.2019.105139.
  17. Seruga, D., Hansenne, E., Haesen, V. and Nagode, M. (2014), "Durability prediction of EN 1.4512 exhaust mufflers under thermomechanical loading", Int. J. Mech. Sci., 84, 199-207. https://doi.org/10.1016/j.ijmecsci.2014.04.004.
  18. Seruga, D., Klemenc, J., Oman, S. and Nagode, M. (2022a), "Elastoplastic response of a pipe bend using Prandtl operator approach in a finite element analysis", Procedia Struct. Integr., 35, 150-158. https://doi.org/10.1016/j.prostr.2021.12.059.
  19. Seruga, D., Klemenc, J., Oman, S. and Nagode, M. (2022b), "Structural finite element analysis using material model with prandtl operator approach", LCF9-Ninth International Conference on Low Cycle Fatigue, https://doi.org/10.48447/LCF9-2022-050.
  20. Tomazincic, D. and Klemenc, J. (2022), "Estimate of Coffin-Manson curve shift for the porous alloy AlSi9Cu3 based on numerical simulations of a porous material carried out by using the Taguchi array", Mater., 15(6), 2269. https://doi.org/10.3390/ma15062269.
  21. Tomazincic, D., Borovinsek, M., Ren, Z. and Klemenc, J. (2021), "Improved prediction of low-cycle fatigue life for high-pressure die-cast aluminium alloy AlSi9Cu3 with significant porosity", Int. J. Fatig., 144, 106061. https://doi.org/10.1016/j.ijfatigue.2020.106061.
  22. Zouambi, L., Serier, B. and Benamara, N. (2014), "Effect of cavity-defects interaction on the mechanical behavior of the bone cement", Adv. Mater. Res., 3, 35-45. https://doi.org/10.12989/amr.2014.3.1.035.