DOI QR코드

DOI QR Code

Electrical resistivity survey and interpretation considering excavation effects for the detection of loose ground in urban area

  • Seo Young Song (Department of Energy and Mineral Resources, Sejong University) ;
  • Bitnarae Kim (Department of Energy and Mineral Resources, Sejong University) ;
  • Ahyun Cho (Department of Energy and Mineral Resources, Sejong University) ;
  • Juyeon Jeong (Department of Energy and Mineral Resources, Sejong University) ;
  • Dongkweon Lee (His Earth co. ltd.) ;
  • Myung Jin Nam (Department of Energy and Mineral Resources, Sejong University)
  • Received : 2023.04.07
  • Accepted : 2023.08.02
  • Published : 2023.10.25

Abstract

Ground subsidence in urban areas due to excessive development and degraded underground facilities is a serious problem. Geophysical surveys have been conducted to estimate the distribution and scale of cavities and subsidence. In this study, electrical resistivity tomography (ERT) was performed near an area of road subsidence in an urban area. The subsidence arose due to groundwater leakage that carried soil into a neighboring excavation site. The ERT survey line was located between the main subsidence area and an excavation site. Because ERT data are affected by rapid topographic changes and surrounding structures, the influence of the excavation site on the data was analyzed through field-scale numerical modeling. The effect of an excavation should be considered when interpreting ERT data because it can lead to wrong anomalous results. A method for performing 2D inversion after correcting resistivity data for the effect of the excavation site was proposed. This method was initially tested using a field-scale numerical model that included the excavation site and subsurface anomaly, which was a loosened zone, and was then applied to field data. In addition, ERT data were interpreted using an existing in-house 3D algorithm, which considered the effect of excavation sites. The inversion results demonstrated that conductive anomalies in the loosened zone were greater compared to the inversion that did not consider the effects of excavation.

Keywords

Acknowledgement

The research described in this paper was financially supported by Korea Spent Nuclear Fuel (iKSNF) and Korea Foundation of Nuclear Safety (KOFONS) grant funded by the Korea government (Nuclear Safety and Security Commission, NSSC) (No. 2109092-0121-WT112) and Korea Environment Industry & Technology Institute (KEITI) through Subsurface Environmental Managements (SEM) Projects, funded by Korea Ministry of Environment (MOE) (NO. RS-2023-00230833).

References

  1. Arango-Galvan, C., Torre-Gonzalez, B.D.L., Chavez-Segura, R.E., Tejero-Andrade, A., Cifuentes-Nava, G. and Hernandez-Quintero, E. (2011), "Structural pattern of subsidence in an urban area of the southeastern Mexico Basin inferred from electrical resistivity tomography", Geofis. Int., 50(4), 401-409. https://doi.org/10.22201/igeof.00167169p.2011.50.4.152.
  2. Cardarelli, E., Di Filippo, G. and Tuccinardi, E. (2006), "Electrical resistivity tomography to detect buried cavities in Rome: a case study", Near Surf. Geophys., 4(6), 387-392. https://doi.org/10.3997/1873-0604.2006012.
  3. Cardenas-Soto, M., Escobedo-Zenil, D., Tejero-Andrade, A., Nava-Flores, M., Vidal-Garcia, M.C. and Natarajan, T. (2020), "Exploring a near-surface subsidence over a rehabilitated underground mine through ambient seismic noise tomography in combination with other geophysical methods", Near Surf. Geophys., 18(5), 483-495. https://doi.org/10.1002/nsg.12108.
  4. Chavez, R.E., Cifuentes-Nava, G., Hernandez-Quintero, J.E., Vargas, D. and Tejero, A. (2014), "Special 3D electric resistivity tomography (ERT) array applied to detect buried fractures on urban areas: San Antonio Tecomitl, Milpa Alta", Mexico. Geofis. Int., 53(4), 425-434. https://doi.org/10.1016/S0016-7169(14)70076-5.
  5. Constable, S.C., Parker, R.L. and Constable, C.G. (1987), "Occam's inversion: A practical algorithm for generating smooth models from electromagnetic sounding data", Geophysics, 52(3), 289-300. https://doi.org/10.1190/1.1442303.
  6. De Giorgi, L. and Leucci, G. (2014), "Detection of hazardous cavities below a road using combined geophysical methods", Surv. Geophys., 35(4), 1003-1021. https://doi.org/10.1007/s10712-013-9277-4.
  7. Fountain, L.S. (1975), "Evaluation of high-resolution earth resistivity measurement techniques for detecting subsurface cavities in a granite environment", Nat. Tech. Information Service, U. S. A. https://doi.org/10.21236/ada018281.
  8. Genis, M., Akcin, H., Aydan, O. and Bacak, G. (2018), "Investigation of possible causes of sinkhole incident at the Zonguldak Coal Basin, Turkey", Geomech. Eng., 16(2), 177-185. https://doi.org/10.12989/gae.2018.16.2.177.
  9. Han, N., Nam, M.J., Kim, H.J., Lee, T.J., Song, Y. and Suh, J.H. (2008), "Efficient three-dimensional inversion of magnetotelluric data using approximate sensitivities", Geophys. J. Int., 175(2), 477-485. https://doi.org/10.1111/j.1365-246X.2008.03894.x.
  10. Hong, J., Ji, Y., Oh, S. and Choi, S. (2015), "A geophysical survey of subsidence area around limestone mine sites", Geophys. Geophys. Explor., 18(4), 207-215. https://doi.org/10.7582/gge.2015.18.4.207.
  11. Jang, H., Song, S.Y., Kim, B. and Nam, M.J. (2018), "Strategy for improving the resolution of electrical-resistivity inversions for detecting soft ground at shallow depths (~ 10 m)", J. Eng. Geol., 28(3), 367-377. https://doi.org/10.9720/kseg.2018.3.367.
  12. Karaoulis, M.C., Kim, J.H. and Tsourlos, P.I. (2011), "4D active time constrained resistivity inversion", J. Appl. Geophys., 73(1), 25-34. https://doi.org/10.1016/j.jappgeo.2010.11.002.
  13. Kersten, T., Kobe, M., Gabriel, G., Timmen, L., Schon, S. and Vogel, D. (2017), "Geodetic monitoring of subrosion-induced subsidence processes in urban areas", J. Appl. Geod., 11(1), 21-29. https://doi.org/10.1515/jag-2016-0029.
  14. Kidanu, S., Varnavina, A., Anderson, N. and Torgashov, E. (2020), "Pseudo-3D electrical resistivity tomography imaging of subsurface structure of a sinkhole-A case study in Greene County, Missouri", AIMS. Geosci., 6(1), 54-70. https://doi.org/10.3934/geosci.2020005.
  15. Kim, B., Joung, I., Cho, A., Shin, D.K., Han, Y. and Nam, M.J. (2022), "Monitoring the perturbation zone near a foundation excavation with electrical resistivity tomography: Comparison between time-lapse 3D and 2D inversions in single-profile study", J. Appl. Geophys., 104-772. https://doi.org/10.1016/j.jappgeo.2022.104772.
  16. Kim, J.H., Yi, M.J., Hwang, S.H., Song, Y., Cho, S.J. and Synn, J.H. (2007), "Integrated geophysical surveys for the safety evaluation of a ground subsidence zone in a small city", J. Geophys. Eng., 4(3), 332-347. https://doi.org/10.1088/1742-2132/4/3/s12.
  17. Kong, S.M., Kim, D.M., Lee, D.Y., Jung, H.S. and Lee, Y.J. (2018), "Field and laboratory assessment of ground subsidence induced by underground cavity under the sewer pipe", Geomech. Eng., 16(3), 285-293. https://doi.org/10.12989/gae.2018.16.3.285.
  18. Lee, K.H., Park, J.H., Park, J., Lee, I.M. and Lee, S.W. (2019), "Electrical resistivity tomography survey for prediction of anomaly inmechanized tunneling", Geomech. Eng., 19(1), 93-104. https://doi.org/10.12989/gae.2019.19.1.093.
  19. Leucci, G. and De Giorgi, L. (2014), "Cetotheridae, Mysticete Whale, fragment of mandibular detection using GPR method", Proceedings of the 15th International Conference on Ground Penetrating Radar, IEEE, 108-112. https://doi.org/10.1109/icgpr.2014.6970395.
  20. Liu, N., Huang, Q.B., Fan, W., Ma, Y.J. and Peng, J.B. (2018), "Seismic responses of a metro tunnel in a ground fissure site", Geomech. Eng., 15(2), 775-781. https://doi.org/10.12989/gae.2018.15.2.775.
  21. Liu, R., Sun, H., Qin, J. and Zheng, Z. (2023), "A multi-geophysical approach to assess potential sinkholes in an urban area", Eng. Geol., 107-100. https://doi.org/10.1016/j.enggeo.2023.107100.
  22. Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A. and Richard, G. (2005), "Electrical resistivity survey in soil science: a review", Soil Tillage Res., 83(2), 173-193. https://doi.org/10.1016/j.still.2004.10.004.
  23. Sharma, S. and Verma, G.K. (2015), "Inversion of electrical resistivity data: a review", Int. J. Comput. Syst. Eng., 9(4), 400-406. https://doi.org/10.5281/zenodo.1106169.
  24. Smith, D.L. (1986), "Application of the pole-dipole resistivity technique to the detection of solution cavities beneath highways", Geophys., 51(3), 833-837. https://doi.org/10.1190/1.1442135.
  25. Tsourlos, P.I., Szymanski, J.E. and Tsokas, G.N. (1999). The effect of terrain topography on commonly used resistivity arrays. Geophysics, 64(5), 1357-1363. https://doi.org/10.1190/1.1444640.
  26. Ungureanu, C., Priceputu, A., Bugea, A.L. and Chirica, A. (2017), "Use of electric resistivity tomography (ERT) for detecting underground voids on highly anthropized urban construction sites", Procedia. Eng., 209, 202-209. https://doi.org/10.1016/j.proeng.2017.11.148.
  27. Prudhomme, K.D., Khalil, M.A., Shaw, G.D., Speece, M.A., Zodrow, K.R. and Malloy, T.M. (2019), "Integrated geophysical methods to characterize urban subsidence in Butte, Montana, USA", J. Appl. Geophys., 164, 87-105. https://doi.org/10.1016/j.jappgeo.2019.03.004.
  28. Ramirez, R.A., Lee, G.J., Choi, S.K., Kwon, T.H., Kim, Y.C., Ryu, H.H. and Hyun, C. (2022), "Monitoring of construction-induced urban ground deformations using Sentinel-1 PS-InSAR: The case study of tunneling in Dangjin", Korea. Int. J. Appl. Earth Obs. Geoinf., 108, 102721. https://doi.org/10.1016/j.jag.2022.102721.
  29. Vickery, A.C. and Hobbs, B.A. (2002). "The effect of subsurface pipes on apparent-resistivity measurements", Geophys. Prospect., 50(1), 1-13. https://doi.org/10.1046/j.1365-2478.2002.00295.x.
  30. Yun, H.S., Lee, J.Y., Yang, D.Y. and Hong, S.S. (2007), "Areal distribution ratio of rock ffes with geologic ages in the Gyeonggi-Seoul-Incheon Areas", J. Petrol. Soc. Korea, 16(4), 208-216. https://koreascience.kr/article/JAKO200718259610682.page. 10682.page