DOI QR코드

DOI QR Code

AI 및 IoT에 대한 위성항법시스템 활용 동향

Trends in Utilizing Satellite Navigation Systems for AI and IoT

  • 박희선 (조선대학교 전자공학과 IT-Bio 융합시스템 전공) ;
  • 주정민 (한국항공우주연구원) ;
  • 황석승 (조선대학교 전자공학부 IT-Bio 융합시스템 전공)
  • 투고 : 2023.08.27
  • 심사 : 2023.10.17
  • 발행 : 2023.10.31

초록

4차 산업혁명에서 AI(Artificial Intelligence)와 IoT(Internet of Things) 기술은 다양한 분야에서 혁신적으로 활용되고 있으며, 특히 자산 관리, 재해 관리, 기상 관측 분야에서의 성장세가 돋보인다. 이러한 분야에서는 실시간으로 대상의 위치와 상태를 정확히 파악하고, 기존 센서로 감지하기 어려운 상황에서도 다양한 데이터를 수집할 필요가 있다. 이를 위해 위성항법시스템 기술의 활용이 필수적이며, 이 기술을 통해 자산의 효율적인 관리, 재해 예방 및 대응, 정확한 기상 상황 예측 등이 가능하다. 본 논문은 AI 또는 IoT를 접목한 다양한 분야 중 자산관리, 재난 관리, 기상 관측 분야에서 위성항법시스템 기술이 적용된 최신 동향을 조사한 결과를 제시하고 분석한다.

In the 4th Industrial Revolution, AI(Artificial Intelligence) and IoT(Internet of Things) technologies are being applied to across various fields, with particularly prominence in asset management, disaster management, and meteorological observation. In these fields, it is necessary to accurately determine the real-time and precise tracking of the object's location and status, and to collect various data even in situations that are difficult to detect with existing sensors. In order to address these demands, the use of GNSS(Global Navigation Satellite System) is essential, and this technology enables the efficient management of assets, disaster prevent and response, and accurate weather forecasting. In this paper, we provide the investigated results for the latest trends in the application of GNSS in the fields of asset management, disaster management, and weather observation, among various fields incorporating AI and IoT and analyze them.

키워드

과제정보

이 논문은 2023년도 조선대학교 연구비의 지원을 받아 연구되었음.

참고문헌

  1. I. Lee and K. Lee, "The Internet of Things (IoT): Applications, investments, and challenges for enterprises," Business Horizons, vol. 58, no. 4, 2015, pp. 431-440. https://doi.org/10.1016/j.bushor.2015.03.008
  2. J. Borana, "Applications of Artificial Intelligence & Associated Technologies," Science [ETEBMS-2016], vol. 5, no. 6, 2016.
  3. C. Jing, S. Wang, M. Wang, M. Du, L. Zhou, T. Sun, and J. Wang, "A Low-Cost Collaborative Location Scheme with GNSS and RFID for the Internet of Things," ISPRS Int. J. of Geo-Information, vol. 7, no. 5, 2018, p. 180.
  4. A. Franko, G. Vida, and P. Varga, "Reliable Identification Schemes for Asset and Production Tracking in Industry 4.0," Sensors, vol. 20, no. 13, 2020, p. 3709.
  5. H. Woo, Y. Joo, M. Choi, and S. Jang, "Analysis about technology requirements for Development of Disaster Detecting Satellite Sensor," J. of the Korea Institute of Electronic Communication Science (KIECS), vol. 10, no. 11, Nov. 2015, pp. 1205-1216. https://doi.org/10.13067/JKIECS.2015.10.11.1205
  6. K. M. Kafi, and M. B. A. Gibril, "GPS Application in Disaster Management: A Review," Asian J. of Applied Sciences, vol. 4, no. 1, 2016.
  7. H. Yoon, "Development of Contents on the Marine Meteorology Service by Meteorology and Climate Big Data," J. of the Korea Institute of Electronic Communication Science (KIECS), vol. 11, no. 2, Feb. 2016, pp. 125-138. https://doi.org/10.13067/JKIECS.2016.11.2.125
  8. G. Bak, S. Oh, G. Park, and Y. Bae, "Groundwater Level Predicition using ANFIS Algorithm," J. of the Korea Institute of Electronic Communication Science (KIECS), vol. 16, no. 6, Dec. 2021, pp. 1239-1248.
  9. K. Wilgan, W. Rohm, and J. Bosy, "Multi-observation meteorological and GNSS data comparison with Numerical Weather Prediction model," Atmospheric Research, vol. 156, 2015, pp. 29-42. https://doi.org/10.1016/j.atmosres.2014.12.011
  10. R. Malik, S. Das, and A. Bose, "A GNSS-GSM Integrated Location Tracking System," In Proc. National Conf. on Materials Devices and Circuit for Communication Technology (MDCCT)2014, 2014, pp. 156-159.
  11. G. Fasano et al., "AMPERE: exploiting Galileo for electrical asset mapping in emerging countries," in 2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Naples, Italy: IEEE, Jun. 2021, pp. 709-714.
  12. M. Fabius, D. Lapeyre, F. Messager, I. Kiely, L. Arzer, and A. Pomies, "GEONAV IoT-Study of Hybrid 5G/GNSS Positioning," In Proc. of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), Sep. 2021, pp. 725-752.
  13. THALES, "GEONAV IoT precise positioning solution both outdoor and indoor"
  14. R. Hohensinn and A. Geiger, "Stand-Alone GNSS Sensors as Velocity Seismometers: Real-Time Monitoring and Earthquake Detection," Sensors, vol. 18, no. 11, 2018, p. 3712.
  15. J. R. Elliott, "Earth Observation for the Assessment of Earthquake Hazard, Risk and Disaster Management," Surveys in geophysics, vol. 41, no. 6, 2020, pp. 1323-1354. https://doi.org/10.1007/s10712-020-09606-4
  16. D. Hwang, D. Kim, and D. Kim, "Estimation of Building Safety Risk in Earthquake Calamity Situation using Linear Regression Algorithm," J. of the Institute of Electronics and Information Engineers, vol. 59, no. 1, 2022, pp. 138-147. https://doi.org/10.5573/ieie.2022.59.1.138
  17. S. Kim, S.-H. Hwang, O. Kwon, S.-Y. Suk, and S.-M. Chun, "Analysis of Settlement Trend Information in GNSS-based Settlement Detector for analyzing Settlement of Buildings in Earthquake Hazard Zones," J. of the Korean Institute of Plant Engineering, vol. 26, no. 1, 2021, pp. 65-72. https://doi.org/10.55029/kabl.2021.37.1
  18. M. Dye, D. S. Stamps, M. Mason, and E. Saria, "Toward autonomous detection of anomalous GNSS data via applied unsupervised artificial intelligence," in 2021 Third Int. Conf. on Transdisciplinary AI (TransAI), Laguna Hills, CA, USA, Sep. 2021, pp. 85-91.
  19. F. Alshawaf, T. Fuhrmann, A. Knopfler, X. Luo, M. Mayer, S. Hinz, and B. Heck, "Accurate Estimation of Atmospheric Water Vapor Using GNSS Observations and Surface Meteorological Data," IEEE Trans. Geosci. Remote Sensing, vol. 53, no. 7, 2015, pp. 3764-3771. https://doi.org/10.1109/TGRS.2014.2382713
  20. World Meteorological Organization (WMO), "Global Observing System"
  21. H. Fu, W. Zhang, C. Li, and Z. Hu, "A Rainfall Forecast Model Based on GNSS Tropospheric Parameters and BP-NN Algorithm," Atmosphere, vol. 13, no. 7, 2022, p. 1045.
  22. W. Li, S. Kang, Y. Sun, W. Bai, Y. Wang, and H. Song, "A Machine Learning Approach for Air-Quality Forecast by Integrating GNSS Radio Occultation Observation and Weather Modeling," Atmosphere, vol. 14, no. 1, 2022, p. 58.
  23. E. R. Kursinski, G. A. Hajj, J. T. Schofield, R. P. Linfield, and K. R. Hardy, "Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System," J. of Geophysical Research, vol. 102, no. D19, 1997, pp. 23429-23465. https://doi.org/10.1029/97JD01569