DOI QR코드

DOI QR Code

Estimation of radionuclides leaching characteristics in different sized geopolymer waste forms with simulated spent ion-exchange resin

  • Younglim Shin (Division of Advanced Nuclear Engineering, POSTECH) ;
  • Byoungkwan Kim (Division of Advanced Nuclear Engineering, POSTECH) ;
  • Jaehyuk Kang (Division of Advanced Nuclear Engineering, POSTECH) ;
  • Hyun-min Ma (Division of Advanced Nuclear Engineering, POSTECH) ;
  • Wooyong Um (Division of Advanced Nuclear Engineering, POSTECH)
  • Received : 2023.02.03
  • Accepted : 2023.06.15
  • Published : 2023.10.25

Abstract

This study presents a method to solidify spent ion-exchange resin (IER) in a metakaolin-based geopolymer and shows results of mechanical strength, immersion, leaching, irradiation, and thermal cycling tests for waste acceptance criteria (WAC) to repository. The geopolymer waste form with 20 wt% of simulated spent IER met the WAC in South Korea (ROK), and the leaching tests of various sized-waste forms up to 15.0 × 30.0 cm and waste loadings up to 20 wt% for 1-5 d and 1-90 d achieved a leachability index, Li > 6. In a leaching test for 5 d, the cumulative fraction leached (CFL) for Cs, which leached the most, was linearly correlated with the square root of leaching time for all waste forms, and Li increased as the size of the waste form increased. The CFL was also correlated with elapsed time in the 90 d leaching test. The correlations among CFL, time, and volume-to-surface area ratio of waste forms used to estimate the Li of Cs of a 200-L sized geopolymer with 15 wt% IER showed the Li values as 14.73 (5 d) and 17.71 (90 d), respectively, indicating that the large-sized geopolymer waste form met the WAC.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20211510100040). In addition, this work was supported by the Institute for Korea Spent Nuclear Fuel (iKSNF) and Korea Foundation of Nuclear Safety (KOFONS) grant funded by the Korea government (Nuclear Safety and Security Commission, NSSC) (No. 2109092-0323-CG100).

References

  1. IAEA, Nuclear Power Reactors in the World, vol. 2, IAEA, Vienna, 2022. Reference Data Series No.
  2. IAEA, Status and Trends in Spent Fuel and Radioactive Waste Management, IAEA, Vienna, 2022. IAEA Nuclear Energy Series No. NW-T-1.14 (Rev. 1).
  3. M.H. Ahn, S.C. Lee, K.J. Lee, Disposal concept for LILW in Korea: characterization methodology and the disposal priority, Prog. Nucl. Energy 51 (2) (2009) 327-333. https://doi.org/10.1016/j.pnucene.2008.07.001
  4. S.Y. Kang, J.U. Lee, S.H. Moon, K.W. Kim, Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater, Chemosphere 56 (2) (2004) 141-147. https://doi.org/10.1016/j.chemosphere.2004.02.004
  5. J. Wang, Z. Wan, Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry, Prog. Nucl. Energy 78 (2015) 47-55. https://doi.org/10.1016/j.pnucene.2014.08.003
  6. A. Andrews, Radioactive Waste Streams: Waste Classification for Disposal, CRS Report for Congress, Congressional Research Service, 2006.
  7. W. Lin, H. Chen, C. Huang, Performance study of ion exchange resins solidification using metakaolin-based geopolymer binder, Prog. Nucl. Energy 129 (2020), 103508.
  8. Korea Hydro & Nuclear Power Co Ltd, Final Safety Analysis Report, Shin Kori Unit 3 & 4, Korea, 2018.
  9. N.S. Kamaruzaman, D.S. Kessel, C.L. Kim, Management of spent ion-exchange resins from nuclear power plant by blending method, J. Nucl. Fuel Cycle Waste Technol. 16 (1) (2018) 65-82. https://doi.org/10.7733/jnfcwt.2018.16.1.65
  10. V. Luca, H.L. Bianchi, A.C. Manzini, Cation immobilization in pyrolyzed simulated spent ion exchange resins, J. Nucl. Mater. 424 (1-3) (2012) 1-11. https://doi.org/10.1016/j.jnucmat.2012.01.004
  11. L. Shao, H. Wei, H. Lei, M. Yi, X. Cui, Y. Wei, K. Wang, In situ immobilization properties and mechanism of geopolymer microspheres after adsorbing Sr2+ and Cs+ (Sr/Cs@ GPMs), Ceram. Int. 49 (7) (2023) 10807-10821. https://doi.org/10.1016/j.ceramint.2022.11.273
  12. H. Lei, Y. Muhammad, K. Wang, M. Yi, C. He, Y. Wei, T. Fujita, Facile fabrication of metakaolin/slag-based zeolite microspheres (M/SZMs) geopolymer for the efficient remediation of Cs+ and Sr2+ from aqueous media, J. Hazard Mater. 406 (2021), 124292.
  13. P. Kinnunen, ANTIOXI-Decontamination Techniques for Activity Removal in Nuclear Environments, VTT Technical Research Centre of Finland: Espoo, Finland, 2008. VTT-R-00299-08.
  14. J. Li, J. Wang, Advances in cement solidification technology for waste radioactive ion exchange resins: a review, J. Hazard Mater. 135 (1-3) (2006) 443-448. https://doi.org/10.1016/j.jhazmat.2005.11.053
  15. M. Bortnikova, O. Karlina, G.Y. Pavlova, K. Semenov, S. Dmitriev, Conditioning the slag formed during thermochemical treatment of spent ion-exchange resins, At. Energy 105 (5) (2008) 351-356. https://doi.org/10.1007/s10512-009-9107-4
  16. J. Ahn, W. Kim, W. Um, Development of metakaolin-based geopolymer for solidification of sulfate-rich HyBRID sludge waste, J. Nucl. Mater. 518 (2019) 247-255. https://doi.org/10.1016/j.jnucmat.2019.03.008
  17. T.A. Bayoumi, M.E. Tawfik, Immobilization of sulfate waste simulate in polymerecement composite based on recycled expanded polystyrene foam waste: Evaluation of the final waste form under freeze-thaw treatment, Polym. Compos. 38 (4) (2017) 637-645. https://doi.org/10.1002/pc.23622
  18. W.H. Lee, T.W. Cheng, Y.C. Ding, K.L. Lin, S.W. Tsao, C.P. Huang, Geopolymer technology for the solidification of simulated ion exchange resins with radionuclides, J. Environ. Manag. 235 (2019) 19-27. https://doi.org/10.1016/j.jenvman.2019.01.027
  19. E. Lafond, C.C.D. Coumes, S. Gauffinet, D. Chartier, P. Le Bescop, L. Stefan, A. Nonat, Investigation of the swelling behavior of cationic exchange resins saturated with Na+ ions in a C3S paste, Cement Concr. Res. 69 (2015) 61-71. https://doi.org/10.1016/j.cemconres.2014.12.009
  20. J. Davidovits, Properties of Geopolymer Cements, First International Conference on Alkaline Cements and Concretes, Kiev State Technical University Kiev, Ukraine, 1994, pp. 131-149.
  21. C.A. Rees, J.L. Provis, G.C. Lukey, J.S. Van Deventer, The mechanism of geopolymer gel formation investigated through seeded nucleation, Colloids Surf. A Physicochem. Eng. Asp. 318 (1-3) (2008) 97-105. https://doi.org/10.1016/j.colsurfa.2007.12.019
  22. P. Duan, C. Yan, W. Zhou, W. Luo, C. Shen, An investigation of the microstructure and durability of a fluidized bed fly ashemetakaolin geopolymer after heat and acid exposure, Mater. Des. 74 (2015) 125-137. https://doi.org/10.1016/j.matdes.2015.03.009
  23. B. Kim, S. Lee, Review on characteristics of metakaolin-based geopolymer and fast setting, J. Korean Ceram. Soc. 57 (4) (2020) 368-377. https://doi.org/10.1007/s43207-020-00043-y
  24. J.G. Jang, S.M. Park, H.K. Lee, Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium, J. Hazard Mater. 318 (2016) 339-346. https://doi.org/10.1016/j.jhazmat.2016.07.003
  25. M.L. Yeoh, S. Ukritnukun, A. Rawal, J. Davies, B.J. Kang, K. Burrough, Z. Aly, P. Dayal, E.R. Vance, D.J. Gregg, Mechanistic impacts of long-term gamma irradiation on physicochemical, structural, and mechanical stabilities of radiation-responsive geopolymer pastes, J. Hazard Mater. 407 (2021), 124805.
  26. P. He, J. Cui, M. Wang, S. Fu, H. Yang, C. Sun, X. Duan, Z. Yang, D. Jia, Y. Zhou, Interplay between storage temperature, medium and leaching kinetics of hazardous wastes in Metakaolin-based geopolymer, J. Hazard Mater. 384 (2020), 121377.
  27. M.I. Ojovan, G.A. Varlackova, Z.I. Golubeva, O.N. Burlaka, Long-term field and laboratory leaching tests of cemented radioactive wastes, J. Hazard Mater. 187 (1-3) (2011) 296-302. https://doi.org/10.1016/j.jhazmat.2011.01.004
  28. American Nuclear Society, Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-Term Test Procedure, ANSI/ANS-16.1-2003, American Nuclear Society La Grange Park, Illinois, USA, 2003.
  29. American Nuclear Society, Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-Term Test Procedure, ANSI/ANS-16.1-2019, American Nuclear Society La Grange Park, Illinois, USA, 2019.
  30. C. McIsaac, S. Croney, Effect of waste form size on the leachability of radionuclides contained in cement-solidified evaporator concentrates generated at nuclear power stations, Waste Manage. (Tucson, Ariz.) 11 (4) (1991) 271e282.
  31. B. Kim, J. Lee, J. Kang, W. Um, Development of geopolymer waste form for immobilization of radioactive borate waste, J. Hazard Mater. 419 (2021), 126402.
  32. Korean Standards Association, Standard Test Method for Compressive Strength of Concrete, vol. 2405, 2010. Korea, KS F.
  33. US Nuclear Regulatory Commission, Technical Position on Waste Form (Rev. 1), Low-Level Waste Management Branch, Office of Nuclear Material Safety and Safeguards, Washington, DC, 1991.
  34. American Society for Testing and Materials, Standard Test Method for Thermocycling of Electroplated Plastics, ASTM, West Conshohocken, Pennsylvania, 1985.
  35. R. Pouhet, M. Cyr, R. Bucher, Influence of the initial water content in flash calcined metakaolin-based geopolymer, Construct. Build. Mater. 201 (2019) 421-429. https://doi.org/10.1016/j.conbuildmat.2018.12.201
  36. S.V. Patankar, S.S. Jamkar, Y.M. Ghugal, Effect of water-to-geopolymer binder ratio on the production of fly ash based geopolymer concrete, Int. J. Adv. Technol. Civ. Eng 2 (1) (2013) 79-83.
  37. D. Hardjito, S.E. Wallah, D.M. Sumajouw, B.V. Rangan, Factors influencing the compressive strength of fly ash-based geopolymer concrete, Civ. Eng. Dimens. 6 (2) (2004) 88-93. https://doi.org/10.1080/13287982.2005.11464946
  38. N. Zhang, A. Hedayat, H.G.B. Sosa, J.J.G. Cardenas, G.E.S. Alvarez, V.B.A. Rivera, Specimen size effects on the mechanical behaviors and failure patterns of the mine tailings-based geopolymer under uniaxial compression, Construct. Build. Mater. 281 (2021), 122525.
  39. P. Chen, C. Liu, Y. Wang, Size effect on peak axial strain and stress-strain behavior of concrete subjected to axial compression, Construct. Build. Mater. 188 (2018) 645-655. https://doi.org/10.1016/j.conbuildmat.2018.08.072
  40. Y. Sherif, A. Akmal, M. Diaa, Effect of aggregate type and specimen configuration on concrete compressive strength, Crystals 10 (7) (2020) 625.
  41. D. Lambertin, C. Boher, A. Dannoux-Papin, K. Galliez, A. Rooses, F. Frizon, Influence of gamma ray irradiation on metakaolin based sodium geopolymer, J. Nucl. Mater. 443 (1-3) (2013) 311-315. https://doi.org/10.1016/j.jnucmat.2013.06.044
  42. U. Berner, Solubility of Radionuclides in a Concrete Environment for Provisional Safety Analyses for SGT-E2, Nagra, 2014. TNB 14-07.
  43. X. Niu, Y. Elakneswaran, C.R. Islam, J.L. Provis, T. Sato, F. Frizon, Adsorption behaviour of simulant radionuclide cations and anions in metakaolin-based geopolymer, J. Hazard Mater. 429 (2022), 128373.
  44. S. Foster, N. Ramanan, B. Hanson, B. Mishra, Binding mechanism of strontium to biopolymer hydrogel composite materials, J. Radioanal. Nucl. Chem. 332 (5) (2023) 1577-1582. https://doi.org/10.1007/s10967-022-08613-6
  45. A.J. Chandler, T.T. Eighmy, O. Hjelmar, D. Kosson, S. Sawell, J. Vehlow, H. Van der Sloot, J. Hartlen, Municipal Solid Waste Incinerator Residues, Elsevier, Netherlands, 1997.
  46. G.J. de Groot, H.A. van der Sloot, Determination of Leaching Characteristics of Waste Materials Leading to Environmental Product Certification, vol. 1123, ASTM Special Technical Publication, 1992, pp. 149-170.