References
- Aslani, H. and Miranda, E. (2005), "Fragility assessment of slab-column connections in existing non-ductile reinforced concrete buildings", J. Earthq. Eng., 9, 777-804. https://doi.org/10.1080/13632460509350566.
- Aydinoglu, M.N. (2007), "A response spectrum-based nonlinear assessment tool practice: Incremental response spectrum analysis (IRSA)", ISET J. Earthq. Technol., 4(1), 169-172.
- Baker, J.W. (2015), "Efficient analytical fragility function fitting using dynamic structural analysis", Earthq. Spectra, 31(1), 579-599. https://doi.org/10.1193/021113EQS025M.
- Bradley, B.A. and Dhakal, R.P. (2008), "Error estimation of closed-form solution for annual rate of structural collapse", Earthq. Eng. Struct. Dyn., 37, 1721-1737. https://doi.org/10.1002/eqe.833.
- Buyuksarac, A., Isik, E. and Harirchian, E. (2021), "A case study for determination of seismic risk priorities in Van (Eastern Turkey)", Earthq. Struct., 20(4), 445-455. https://doi.org/10.12989/eas.2021.20.4.445.
- Celep, Z. (2003), Seismic Safety of the Regional School Building of Bingol, Istanbul Teknik u niversitesi, Istanbul, Turkiye. http://web.itu.edu.tr/celep/files/18.pdf
- Eads, L., Miranda, E., Krawinkler, H. and Lignos, D.G. (2013), "An efficient method for estimating the collapse risk of structures in seismic regions", Earthq. Eng. Struct. Dyn., 42, 25-41. https://doi.org/10.1002/eqe.2191.
- Eem, S.H. and Jung, H.J. (2018), "Seismic fragility assessment of isolated structures by using stochastic response database", Earthq. Struct., 14(5), 389-398. https://doi.org/10.12989/eas.2018.14.5.389.
- FEMA 273-274 (1997), Commentary on the NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington D.C., USA.
- FEMA 356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington D.C., USA.
- Fujino, Y., Yokota, T., Hamazaki, Y. and Inoue, R. (1984), "Multiple event analysis of 1979 Imperial Valley Earthquake using distinct phases in near-field accelerograms", Doboku Gakkai Ronbunshu, 1984(344), 165-174. https://doi.org/10.2208/jscej.1984.165
- Ghafory-Ashtiany, M., Mousavi, M. and Azarbakht, A. (2011), "Strong ground motion record selection for the reliable prediction of the mean seismic collapse capacity of a structure group", Earthq. Eng. Struct. Dyn., 40, 91-708. https://doi.org/10.1002/eqe.1055.
- Girgin, S. (2011), "The natech events during the 17 August 1999 Kocaeli earthquake: Aftermath and lessons learned", Nat. Hazards Earth Syst. Sci., 11, 1129-1140. https://doi.org/10.5194/nhess-11-1129-2011, 2011.
- Grossi, E., Zerbin, M. and Aprile, A. (2020), "Advanced techniques for pilotis RC frames seismic retrofit: Performance comparison for a strategic building case study", Build., 10(9), 149. https://doi.org/10.3390/buildings10090149.
- Hancilar, U., Sesetyan, K. and Cakti, E. (2019), "Comparative damage and economic loss estimations under design basis earthquake level for post-2000 buildings in Istanbul", Teknik Dergi, 30(3), 9107-9123. https://doi.org/10.18400/tekderg.326939.
- Hauksson, E., Jones, L.M. and Hutton, K. (1995), "The 1994 Northridge earthquake sequence in California: Seismological and tectonic aspects", J. Geophys. Res.: Solid Earth, 100(B7), 12335-12355. https://doi.org/10.1029/95JB00865.
- HAZUS 5.1 (2022), Earthquake Model Technical Manual, Federal Emergency Management Agency, Washington, D.C., USA.
- Ibarra, L.F. and Krawinkler, H. (2005), "Global collapse of frame structures under seismic excitations", Report No. 152, John A. Blume Earthquake Engineering Center, Stanford, CA, USA.
- Isik, E. (2022), "Comparative investigation of seismic and structural parameters of earthquakes (M≥6) after 1900 in Turkey", Arab. J. Geosci., 15(10), 1-21. https://doi.org/10.1007/s12517-022-10255-7.
- Isik, E., Harirchian, E., Buyuksarac, A. and Ekinci, Y.L. (2021), "Seismic and structural analyses of the eastern Anatolian region (Turkey) using different probabilities of exceedance", Appl. Syst. Innov., 4(4), 89. https://doi.org/10.3390/asi4040089.
- Kalafat, D., Gunes, Y., Arpat, E., O lmez, Y., O z, G., Horasan, G. and Koseoglu, A. (2003), "1 May 2003 Bingol earthquake preliminary report", Bogazici University Kandilli Observatory and Earthquake Research Institute Seismological Service. (In Turkish)
- Karasin, A. and Karaesmen, E. (2005), "Analysing the structural damages occurred in the Bingol earthquake", Earthquake Symposium 2005, Kocaeli, Turkey, March.
- Karasin, I.B. and Isik, E. (2017), "The effect of soil conditions on the seismic performance of buildings for different structure behavior factors", Dicle u niversitesi Muhendislik Fakultesi Muhendislik Dergisi, 8(4), 661-673. (In Turkish)
- Khazai, B. and Sitar, N. (2004), "Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events", Eng. Geol., 71(1-2), 79-95. https://doi.org/10.1016/S0013-7952(03)00127-3.
- Kia, M., Banazadeh, M. and Bayat, M. (2018), "Rapid seismic vulnerability assessment by new regression-based demand and collapse models for steel moment frames", Earthq. Struct., 14(3), 203-214. https://doi.org/10.12989/eas.2018.14.3.203.
- Korkmaz, A. and Aktas, E. (2006), "Probability based seismic analysis for R/C frame structures", Gazi u niversitesi Muhendislik Mimarlik Fakultesi Dergisi, 21(1), 55-64. (In Turkish)
- Kutanis, M., Ulutas, H. and Isik, E. (2018), "PSHA of Van province for performance assessment using spectrally matched strong ground motion records", J. Earth Syst. Sci., 127(7), 1-14. https://doi.org/10.1007/s12040-018-1004-6.
- Li, S.Q. (2023a), "Empirical resilience and vulnerability model of regional group structure considering optimized macroseismic intensity measure", Soil Dyn. Earthq. Eng., 164, 107630. https://doi.org/10.1016/j.soildyn.2022.107630.
- Li, S.Q. (2023b), "Empirical vulnerability estimation models considering updating the structural earthquake damage database", Soil Dyn. Earthq. Eng., 169, 107864. https://doi.org/10.1016/j.soildyn.2023.107864.
- Li, S.Q. (2023c), "Comparison of RC girder bridge and building vulnerability considering empirical seismic damage", Ain Shams Eng. J., 2023, 102287. https://doi.org/10.1016/j.asej.2023.102287.
- Li, S.Q. and Chen, Y.S. (2023), "Vulnerability and economic loss evaluation model of a typical group structure considering empirical field inspection data", Int. J. Disaster Risk Reduct., 88, 103617. https://doi.org/10.1016/j.ijdrr.2023.103617.
- Li, S.Q. and Gardoni, P. (2023), "Empirical seismic vulnerability models for building clusters considering hybrid intensity measures", J. Build. Eng., 68, 106130. https://doi.org/10.1016/j.jobe.2023.106130.
- Li, S.Q. and Liu, H.B. (2022), "Vulnerability prediction model of typical structures considering empirical seismic damage observation data", Bull. Earthq. Eng., 20(10), 5161-5203. https://doi.org/10.1007/s10518-022-01395-y.
- Li, S.Q., Chen, Y.S., Liu, H.B. and Del Gaudio, C. (2023a), "Empirical seismic vulnerability assessment model of typical urban buildings", Bull. Earthq. Eng., 21(4), 2217-2257. https://doi.org/10.1007/s10518-022-01585-8.
- Li, S.Q., Liu, H.B., Du, K., Han, J.C., Li, Y.R. and Yin, L.H. (2023c), "Empirical seismic vulnerability probability prediction model of RC structures considering historical field observation", Struct. Eng. Mech., 86(4), 547-571. https://doi.org/10.12989/sem.2023.86.4.547.
- Li, S.Q., Liu, H.B., Farsangi, E.N. and Du, K. (2023b), "Seismic fragility estimation considering field inspection of reinforced concrete girder bridges", Struct. Infrastr. Eng., 2023, 1-17. https://doi.org/10.1080/15732479.2023.2208565.
- Onat, O. and Yon, B. (2021b), "Incremental dynamic analysis of mid-rise RC buildings to assess effect of concrete strength and tension reinforcement ratio in beam", Uludag universitesi Muhendislik Fakultesi Dergisi, 26(1), 283-300. https://doi.org/10.17482/Uumfd.831375.
- Onat, O. and Yon, B. (2021), "A novel inter-story drift limit proposal for TSC2018 and fragility prognosis with TSC2007", J. Struct. Eng., 4(2), 068-082. http://doi.org/10.31462/jseam.2021.04068082.
- Onat, O., Yon, B., Oncu, M.E., Varolgunes, S., Karasin, A. and Cemalgil, S. (2022), "Field reconnaissance and structural assessment of the October 30, 2020, Samos, Aegean Sea earthquake: An example of severe damage due to the basin effect", Nat. Hazard., 112, 75-117. https://doi.org/10.1007/s11069-021-05173-y.
- Oncu, M.E. and Yon, M.S. (2016), "Assessment of nonlinear static and incremental dynamic analyses for RC structures", Comput. Concrete, 18(6), 1195-1211. https://doi.org/10.12989/cac.2016.18.6.1195.
- Porter, K., Kennedy, R. and Bachman, R. (2007), "Creating fragility functions for performance-based earthquake engineering", Earthq. Spectra, 23, 471-489. https://doi.org/10.1193/1.2720892.
- Ramirez-Gaytan, A., Preciado, A., Flores-Estrella, H., Santos, J. C. and Alcantara L. (2022), "Seismic resonance vulnerability assessment on shear walls and framed structures with different typologies: The case of Guadalajara, Mexico", Earthq. Struct., 22(3), 263 275. https://doi.org/10.12989/eas.2022.22.3.263.
- Sezer, L.I. (2008), "Seismicity in the Karliova (Bingol) region", Aegean Geograph. J., 17(1-2), 35-50. (In Turkish)
- Sisi, A.A., Erberik, M.A. and Askan, A. (2018), "The effect of structural variability and local site conditions on building fragility functions", Earthq. Struct., 14(4), 285-295. https://doi.org/10.12989/eas.2018.14.4.285.
- Slejko, D. (2018), "What science remains of the 1976 Friuli earthquake?", Bollettino di Geofisica Teorica ed Applicata, 59(4), 327-350. https://doi.org/10.4430/bgta0224.
- TDTH (2018), Turkiye Earthquake Hazard Maps, Turkiye Deprem Tehlike Haritalari Interaktif Web Uygulamasi. tdth.afad.gov.tr (In Turkish)
- Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31, 491-514. https://doi.org/10.1002/eqe.141.
- Vamvatsikos, D. and Cornell, C.A. (2004), "Applied incremental dynamic analysis", Earthq. Spectra, 20, 523-553. https://doi.org/10.1193/1.1737737.
- Veals, A. (2013), Damage to Shear Wall, http://slideplayer.com/slide/2476187/
- Verki1a, A.M. and Preciado, A. (2022), "Nonlinear incremental dynamic analysis and fragility curves of tall steel buildings with buckling restrained braces and tuned mass dampers", Earthq. Struct., 22(2), 169-184. https://doi.org/10.12989/eas.2022.22.2.169.
- Wang, F., Miao, J., Fang, Z., Wu, S., Li, X. and Momeni, Y. (2022), "Steel frame fragility curve evaluation under the impact of two various category of earthquakes", Earthq. Struct., 22(1), 15-23. https://doi.org/10.12989/eas.2022.22.1.015.
- Yazdabad, M., Behnamfar, F. and Samani, A.K. (2018), "Seismic behavioral fragility curves of concrete cylindrical water tanks for sloshing, cracking, and wall bending", Earthq. Struct., 14(2), 95-102. https://doi.org/10.12989/eas.2018.14.2.095.
- Yon, B. (2020), "Seismic vulnerability assessment of RC buildings according to the 2007 and 2018 Turkish seismic codes", Earthq. Struct., 18(6), 709-718. http://doi.org/10.12989/eas.2020.18.6.709.
- Yon, B. and Calayir, Y. (2015), "The soil effect on the seismic behaviour of reinforced concrete buildings", Earthq. Struct., 8(1), 133-152. https://doi.org/10.12989/eas.2015.8.1.133.
- Yon, B., Oncu, M.E. and Calayir, Y. (2015), "Effects of seismic zones and local soil conditions on response of RC buildings", Gradevinar, 67(6), 585-596. https://doi.org/10.14256/JCE.1192.2014.