DOI QR코드

DOI QR Code

Comparison of different codes using fragility analysis of a typical school building in Türkiye: Case study of Bingöl Çeltiksuyu

  • Received : 2023.05.23
  • Accepted : 2023.08.30
  • Published : 2023.10.25

Abstract

Bingöl, a city in eastern Türkiye, is located at a very close distance to the Karlıova Region which is a junction point of the North Anatolian Fault Zone and Eastern Anatolian Fault Zone. By bilateral step over of North Anatolian Fault Zone and Eastern Anatolian Fault Zone each other there occurred NorthWest-SouthEast extended right-lateral and NorthEast-SouthWest extended left-lateral fault zones. In this paper, a typical school building located in Bingöl Çeltiksuyu was selected as the case study. Information on the school building and Bingöl Earthquake (2003) have been given in the paper. This study aimed to determine the fragility curves of the school building according to HAZUS 2022, Turkish Seismic Codes 1998, 2007 and 2018. These codes have been introduced in terms of damage limits. Incremental dynamic analysis is a parametric analysis method that has recently emerged in several different forms to estimate more thoroughly structural performance under seismic loads. Fragility analysis is commonly using to estimate the damage probability of buildings. Incremental Dynamic Analysis have performed, and 1295 Incremental Dynamic Analysis output was evaluated to obtain fragility curves. 20 different ground motion records have been selected with magnitudes between 5.6M and 7.6M. Scaling factors of these ground motions were selected between 0.1g and 2g. Comparison has been made between HAZUS 2022 and Turkish Seismic Codes 1998, 2007 and 2018 in terms of damage states and how they affected fragility curves. TSC 1998 has more conservative strictions along with TSC 2018 than TSC2007 and HAZUS moderate and extensive damage limits.

Keywords

References

  1. Aslani, H. and Miranda, E. (2005), "Fragility assessment of slab-column connections in existing non-ductile reinforced concrete buildings", J. Earthq. Eng., 9, 777-804. https://doi.org/10.1080/13632460509350566.
  2. Aydinoglu, M.N. (2007), "A response spectrum-based nonlinear assessment tool practice: Incremental response spectrum analysis (IRSA)", ISET J. Earthq. Technol., 4(1), 169-172.
  3. Baker, J.W. (2015), "Efficient analytical fragility function fitting using dynamic structural analysis", Earthq. Spectra, 31(1), 579-599. https://doi.org/10.1193/021113EQS025M.
  4. Bradley, B.A. and Dhakal, R.P. (2008), "Error estimation of closed-form solution for annual rate of structural collapse", Earthq. Eng. Struct. Dyn., 37, 1721-1737. https://doi.org/10.1002/eqe.833.
  5. Buyuksarac, A., Isik, E. and Harirchian, E. (2021), "A case study for determination of seismic risk priorities in Van (Eastern Turkey)", Earthq. Struct., 20(4), 445-455. https://doi.org/10.12989/eas.2021.20.4.445.
  6. Celep, Z. (2003), Seismic Safety of the Regional School Building of Bingol, Istanbul Teknik u niversitesi, Istanbul, Turkiye. http://web.itu.edu.tr/celep/files/18.pdf
  7. Eads, L., Miranda, E., Krawinkler, H. and Lignos, D.G. (2013), "An efficient method for estimating the collapse risk of structures in seismic regions", Earthq. Eng. Struct. Dyn., 42, 25-41. https://doi.org/10.1002/eqe.2191.
  8. Eem, S.H. and Jung, H.J. (2018), "Seismic fragility assessment of isolated structures by using stochastic response database", Earthq. Struct., 14(5), 389-398. https://doi.org/10.12989/eas.2018.14.5.389.
  9. FEMA 273-274 (1997), Commentary on the NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington D.C., USA.
  10. FEMA 356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington D.C., USA.
  11. Fujino, Y., Yokota, T., Hamazaki, Y. and Inoue, R. (1984), "Multiple event analysis of 1979 Imperial Valley Earthquake using distinct phases in near-field accelerograms", Doboku Gakkai Ronbunshu, 1984(344), 165-174. https://doi.org/10.2208/jscej.1984.165
  12. Ghafory-Ashtiany, M., Mousavi, M. and Azarbakht, A. (2011), "Strong ground motion record selection for the reliable prediction of the mean seismic collapse capacity of a structure group", Earthq. Eng. Struct. Dyn., 40, 91-708. https://doi.org/10.1002/eqe.1055.
  13. Girgin, S. (2011), "The natech events during the 17 August 1999 Kocaeli earthquake: Aftermath and lessons learned", Nat. Hazards Earth Syst. Sci., 11, 1129-1140. https://doi.org/10.5194/nhess-11-1129-2011, 2011.
  14. Grossi, E., Zerbin, M. and Aprile, A. (2020), "Advanced techniques for pilotis RC frames seismic retrofit: Performance comparison for a strategic building case study", Build., 10(9), 149. https://doi.org/10.3390/buildings10090149.
  15. Hancilar, U., Sesetyan, K. and Cakti, E. (2019), "Comparative damage and economic loss estimations under design basis earthquake level for post-2000 buildings in Istanbul", Teknik Dergi, 30(3), 9107-9123. https://doi.org/10.18400/tekderg.326939.
  16. Hauksson, E., Jones, L.M. and Hutton, K. (1995), "The 1994 Northridge earthquake sequence in California: Seismological and tectonic aspects", J. Geophys. Res.: Solid Earth, 100(B7), 12335-12355. https://doi.org/10.1029/95JB00865.
  17. HAZUS 5.1 (2022), Earthquake Model Technical Manual, Federal Emergency Management Agency, Washington, D.C., USA.
  18. Ibarra, L.F. and Krawinkler, H. (2005), "Global collapse of frame structures under seismic excitations", Report No. 152, John A. Blume Earthquake Engineering Center, Stanford, CA, USA.
  19. Isik, E. (2022), "Comparative investigation of seismic and structural parameters of earthquakes (M≥6) after 1900 in Turkey", Arab. J. Geosci., 15(10), 1-21. https://doi.org/10.1007/s12517-022-10255-7.
  20. Isik, E., Harirchian, E., Buyuksarac, A. and Ekinci, Y.L. (2021), "Seismic and structural analyses of the eastern Anatolian region (Turkey) using different probabilities of exceedance", Appl. Syst. Innov., 4(4), 89. https://doi.org/10.3390/asi4040089.
  21. Kalafat, D., Gunes, Y., Arpat, E., O lmez, Y., O z, G., Horasan, G. and Koseoglu, A. (2003), "1 May 2003 Bingol earthquake preliminary report", Bogazici University Kandilli Observatory and Earthquake Research Institute Seismological Service. (In Turkish)
  22. Karasin, A. and Karaesmen, E. (2005), "Analysing the structural damages occurred in the Bingol earthquake", Earthquake Symposium 2005, Kocaeli, Turkey, March.
  23. Karasin, I.B. and Isik, E. (2017), "The effect of soil conditions on the seismic performance of buildings for different structure behavior factors", Dicle u niversitesi Muhendislik Fakultesi Muhendislik Dergisi, 8(4), 661-673. (In Turkish)
  24. Khazai, B. and Sitar, N. (2004), "Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events", Eng. Geol., 71(1-2), 79-95. https://doi.org/10.1016/S0013-7952(03)00127-3.
  25. Kia, M., Banazadeh, M. and Bayat, M. (2018), "Rapid seismic vulnerability assessment by new regression-based demand and collapse models for steel moment frames", Earthq. Struct., 14(3), 203-214. https://doi.org/10.12989/eas.2018.14.3.203.
  26. Korkmaz, A. and Aktas, E. (2006), "Probability based seismic analysis for R/C frame structures", Gazi u niversitesi Muhendislik Mimarlik Fakultesi Dergisi, 21(1), 55-64. (In Turkish)
  27. Kutanis, M., Ulutas, H. and Isik, E. (2018), "PSHA of Van province for performance assessment using spectrally matched strong ground motion records", J. Earth Syst. Sci., 127(7), 1-14. https://doi.org/10.1007/s12040-018-1004-6.
  28. Li, S.Q. (2023a), "Empirical resilience and vulnerability model of regional group structure considering optimized macroseismic intensity measure", Soil Dyn. Earthq. Eng., 164, 107630. https://doi.org/10.1016/j.soildyn.2022.107630.
  29. Li, S.Q. (2023b), "Empirical vulnerability estimation models considering updating the structural earthquake damage database", Soil Dyn. Earthq. Eng., 169, 107864. https://doi.org/10.1016/j.soildyn.2023.107864.
  30. Li, S.Q. (2023c), "Comparison of RC girder bridge and building vulnerability considering empirical seismic damage", Ain Shams Eng. J., 2023, 102287. https://doi.org/10.1016/j.asej.2023.102287.
  31. Li, S.Q. and Chen, Y.S. (2023), "Vulnerability and economic loss evaluation model of a typical group structure considering empirical field inspection data", Int. J. Disaster Risk Reduct., 88, 103617. https://doi.org/10.1016/j.ijdrr.2023.103617.
  32. Li, S.Q. and Gardoni, P. (2023), "Empirical seismic vulnerability models for building clusters considering hybrid intensity measures", J. Build. Eng., 68, 106130. https://doi.org/10.1016/j.jobe.2023.106130.
  33. Li, S.Q. and Liu, H.B. (2022), "Vulnerability prediction model of typical structures considering empirical seismic damage observation data", Bull. Earthq. Eng., 20(10), 5161-5203. https://doi.org/10.1007/s10518-022-01395-y.
  34. Li, S.Q., Chen, Y.S., Liu, H.B. and Del Gaudio, C. (2023a), "Empirical seismic vulnerability assessment model of typical urban buildings", Bull. Earthq. Eng., 21(4), 2217-2257. https://doi.org/10.1007/s10518-022-01585-8.
  35. Li, S.Q., Liu, H.B., Du, K., Han, J.C., Li, Y.R. and Yin, L.H. (2023c), "Empirical seismic vulnerability probability prediction model of RC structures considering historical field observation", Struct. Eng. Mech., 86(4), 547-571. https://doi.org/10.12989/sem.2023.86.4.547.
  36. Li, S.Q., Liu, H.B., Farsangi, E.N. and Du, K. (2023b), "Seismic fragility estimation considering field inspection of reinforced concrete girder bridges", Struct. Infrastr. Eng., 2023, 1-17. https://doi.org/10.1080/15732479.2023.2208565.
  37. Onat, O. and Yon, B. (2021b), "Incremental dynamic analysis of mid-rise RC buildings to assess effect of concrete strength and tension reinforcement ratio in beam", Uludag universitesi Muhendislik Fakultesi Dergisi, 26(1), 283-300. https://doi.org/10.17482/Uumfd.831375.
  38. Onat, O. and Yon, B. (2021), "A novel inter-story drift limit proposal for TSC2018 and fragility prognosis with TSC2007", J. Struct. Eng., 4(2), 068-082. http://doi.org/10.31462/jseam.2021.04068082.
  39. Onat, O., Yon, B., Oncu, M.E., Varolgunes, S., Karasin, A. and Cemalgil, S. (2022), "Field reconnaissance and structural assessment of the October 30, 2020, Samos, Aegean Sea earthquake: An example of severe damage due to the basin effect", Nat. Hazard., 112, 75-117. https://doi.org/10.1007/s11069-021-05173-y.
  40. Oncu, M.E. and Yon, M.S. (2016), "Assessment of nonlinear static and incremental dynamic analyses for RC structures", Comput. Concrete, 18(6), 1195-1211. https://doi.org/10.12989/cac.2016.18.6.1195.
  41. Porter, K., Kennedy, R. and Bachman, R. (2007), "Creating fragility functions for performance-based earthquake engineering", Earthq. Spectra, 23, 471-489. https://doi.org/10.1193/1.2720892.
  42. Ramirez-Gaytan, A., Preciado, A., Flores-Estrella, H., Santos, J. C. and Alcantara L. (2022), "Seismic resonance vulnerability assessment on shear walls and framed structures with different typologies: The case of Guadalajara, Mexico", Earthq. Struct., 22(3), 263 275. https://doi.org/10.12989/eas.2022.22.3.263.
  43. Sezer, L.I. (2008), "Seismicity in the Karliova (Bingol) region", Aegean Geograph. J., 17(1-2), 35-50. (In Turkish)
  44. Sisi, A.A., Erberik, M.A. and Askan, A. (2018), "The effect of structural variability and local site conditions on building fragility functions", Earthq. Struct., 14(4), 285-295. https://doi.org/10.12989/eas.2018.14.4.285.
  45. Slejko, D. (2018), "What science remains of the 1976 Friuli earthquake?", Bollettino di Geofisica Teorica ed Applicata, 59(4), 327-350. https://doi.org/10.4430/bgta0224.
  46. TDTH (2018), Turkiye Earthquake Hazard Maps, Turkiye Deprem Tehlike Haritalari Interaktif Web Uygulamasi. tdth.afad.gov.tr (In Turkish)
  47. Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31, 491-514. https://doi.org/10.1002/eqe.141.
  48. Vamvatsikos, D. and Cornell, C.A. (2004), "Applied incremental dynamic analysis", Earthq. Spectra, 20, 523-553. https://doi.org/10.1193/1.1737737.
  49. Veals, A. (2013), Damage to Shear Wall, http://slideplayer.com/slide/2476187/
  50. Verki1a, A.M. and Preciado, A. (2022), "Nonlinear incremental dynamic analysis and fragility curves of tall steel buildings with buckling restrained braces and tuned mass dampers", Earthq. Struct., 22(2), 169-184. https://doi.org/10.12989/eas.2022.22.2.169.
  51. Wang, F., Miao, J., Fang, Z., Wu, S., Li, X. and Momeni, Y. (2022), "Steel frame fragility curve evaluation under the impact of two various category of earthquakes", Earthq. Struct., 22(1), 15-23. https://doi.org/10.12989/eas.2022.22.1.015.
  52. Yazdabad, M., Behnamfar, F. and Samani, A.K. (2018), "Seismic behavioral fragility curves of concrete cylindrical water tanks for sloshing, cracking, and wall bending", Earthq. Struct., 14(2), 95-102. https://doi.org/10.12989/eas.2018.14.2.095.
  53. Yon, B. (2020), "Seismic vulnerability assessment of RC buildings according to the 2007 and 2018 Turkish seismic codes", Earthq. Struct., 18(6), 709-718. http://doi.org/10.12989/eas.2020.18.6.709.
  54. Yon, B. and Calayir, Y. (2015), "The soil effect on the seismic behaviour of reinforced concrete buildings", Earthq. Struct., 8(1), 133-152. https://doi.org/10.12989/eas.2015.8.1.133.
  55. Yon, B., Oncu, M.E. and Calayir, Y. (2015), "Effects of seismic zones and local soil conditions on response of RC buildings", Gradevinar, 67(6), 585-596. https://doi.org/10.14256/JCE.1192.2014.