DOI QR코드

DOI QR Code

Improved seismic performance of steel moment frames using rotational friction dampers

  • 투고 : 2023.06.03
  • 심사 : 2023.08.29
  • 발행 : 2023.10.25

초록

The use of displacement-dependent rotational friction dampers (RFD) as fuses or interchangeable elements in the moment-resisting frames (MRF) is one of the newest methods for improving seismic performance. In the present study, the performance of rotational friction dampers in MRF has been investigated. Evaluation of MRF with and without RFD models was performed using the finite element method by ABAQUS. For validation, an MRF and MRF with rotational friction dampers were modeled that had been experimentally tested and reported in previous experimental research and a good agreement was observed. The behavior of these dampers in frames of 3-, 6-, and 9-story was studied by modeling the damper directly. Nonlinear time history dynamic analysis was used. It was observed that by increasing the number of stories in the buildings, rotational friction dampers should be used to perform properly against earthquakes. The installation of rotational friction dampers in steel moment-resisting frames shows that the drift ratio between the floors is reduced and the seismic performance of these frames is improved.

키워드

참고문헌

  1. ABAQUS-6.14 (2014), Standard User's Manual, Hibbitt, Karlsson and Sorensen, Inc..
  2. Abdollahzadeh, G. and Banihashemia, M. (2013), "Response modification factor of dual moment-resistant frame with buckling restrained brace (BRB)", Steel Compos. Struct., 14(6), 621-636. https://doi.org/10.12989/scs.2013.14.6.621.
  3. Aghlara, R., Tahir, M.M. and Adnan, A.B. (2018), "Experimental study of pipe-fuse damper for passive energy dissipation in structures", J. Constr. Steel Res., 148, 351-360. https://doi.org/10.1016/j.jcsr.2018.06.004.
  4. AISC (2007), Steel Design Guide 20, Steel Plate Shear Walls, The American Institute of Steel Construction, Chicago, IL, USA.
  5. AISC 341-16 (2016), AISC Seismic Provisions for Structural Steel Buildings, (ANSI/AISC 341-16), The American Institute of Steel Construction, Chicago, IL, USA.
  6. Aloisio, A., Boggian, F. and Tomasi, R. (2022), "Design of a novel seismic retrofitting system for RC structures based on asymmetric friction connections and CLT panels", Eng. Struct., 254, 113807. https://doi.org/10.1016/J.ENGSTRUCT.2021.113807.
  7. Aloisio, A., Contento, A., Boggian, F. and Tomasi, R. (2023), "Probabilistic friction model for aluminium-steel asymmetric friction connections (AFC)", Eng. Struct., 274, 115159. https://doi.org/10.1016/J.ENGSTRUCT.2022.115159.
  8. Anoushehei, M., Daneshjoo, F., Mahboubi, S. and Khazaeli, S. (2017), "Experimental investigation on hysteretic behavior of rotational friction dampers with new friction materials", Steel Compos. Struct., 24(2), 239-248. https://doi.org/10.12989/scs.2017.24.2.239.
  9. ASCE7-10 (2010), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Reston, VA, USA.
  10. Azandariani, M.G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37-47. https://doi.org/10.12989/anr.2022.12.1.037.
  11. Batterbee, D.C. and Sims, N.D. (2005), "Vibration isolation with smart fluid dampers: A benchmarking study", Smart Struct. Syst., 1(3), 235-256. https://doi.org/10.12989/sss.2005.1.3.235.
  12. Benavent-Climent, A. (2010), "A brace-type seismic damper based on yielding the walls of hollow structural sections", Eng. Struct., 32(4), 1113-1122. https://doi.org/10.1016/j.engstruct.2009.12.037.
  13. Boggian, F., Aloisio, A. and Tomasi, R. (2022a), "Experimental and analytical study of friction connection for seismic retrofit with cross-laminated timber (CLT) panels", Earthq. Eng. Struct. Dyn., 51(14), 3304-3326. https://doi.org/10.1002/EQE.3724.
  14. Boggian, F., Tardo, C., Aloisio, A., Marino, E.M. and Tomasi, R. (2022b), "Experimental cyclic response of a novel friction connection for seismic retrofitting of RC buildings with CLT panels", J. Struct. Eng. (ASCE), 148(5), 04022040. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003313/ASSET/696647DB-645C-49B6-8D29-56CC2C51AFA4/ASSETS/IMAGES/LARGE/FIGURE21.JPG.
  15. Borhan, S., Tajammolian, H. and Yazdian, M. (2021), "Evaluation of seismic performance of rotational-friction slip dampers in near-field and far-filed earthquakes", Earthq. Struct., 21(2), 147-159. https://doi.org/10.12989/eas.2021.21.2.147.
  16. Chan, R.W.K. and Albermani, F. (2008), "Experimental study of steel slit damper for passive energy dissipation", Eng. Struct., 30(4), 1058-1066. https://doi.org/10.1016/J.ENGSTRUCT.2007.07.005.
  17. Chen, Z., Dai, Z., Huang, Y. and Bian, G. (2013), "Numerical simulation of large deformation in shear panel dampers using smoothed particle hydrodynamics", Eng. Struct., 48, 245-254. https://doi.org/10.1016/J.ENGSTRUCT.2012.09.008.
  18. Choi, H. and Kim, J. (2009), "Evaluation of seismic energy demand and its application on design of buckling-restrained braced frames", Struct. Eng. Mech., 31(1), 93-112. https://doi.org/10.12989/sem.2009.31.1.093.
  19. Choi, I.R. and Park, H.G. (2008), "Ductility and energy dissipation capacity of shear-dominated steel plate walls", J. Struct. Eng., 134(9), 1495-1507. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:9(1495).
  20. Costa, R.J.T., Gomes, F.C.T., Providencia, P.M.M.P. and Dias, A.M.P.G. (2013), "Influence of shear deformation of exterior beam-column joints on the quasi-static behavior of RC framed structures", Comput. Concrete, 12(4), 393-411. https://doi.org/10.12989/cac.2013.12.4.393.
  21. Duan, Y., Ni, Y.Q., Zhang, H., Spencer, B.F., Ko, J.M. and Dong, S. (2019), "Design formulas for vibration control of sagged cables using passive MR dampers", Smart Struct. Syst., 23(6), 537-551. https://doi.org/10.12989/sss.2019.23.6.537.
  22. Farghaly, A.A. (2015), "Seismic analysis of 3-D two adjacent buildings connected by viscous dampers with effect of underneath different soil kinds", Smart Struct. Syst., 15(5), 1293-1309. https://doi.org/10.12989/sss.2015.15.5.1293.
  23. FEMA P695 (2009), "Quantification of building seismic performance factors", Technical Report P695, Applied Technology Council for the Federal Emergency Management Agency, Washington, D.C., USA.
  24. Filiatrault, A. and Cherry, S. (2011), "Efficient numerical modelling for the design of friction damped braced steel plane frames", Can. J. Civil Eng., 16(3), 211-218. https://doi.org/10.1139/L89-046.
  25. Ghanbari-Ghazijahani, T., Nabati, A., Gorji Azandariani, M. and Fanaie, N. (2020), "Crushing of steel tubes with different infills under partial axial loading", Thin Wall. Struct., 149, 106614. https://doi.org/10.1016/j.tws.2020.106614.
  26. Gholami, M., Gorji Azandariani, M., Najat Ahmed, A. and Abdolmaleki, H. (2023), "Proposing a dynamic stiffness method for the free vibration of bi-directional functionally-graded Timoshenko nanobeams", Adv. Nano Res., 14(2), 127-139. https://doi.org/https://doi.org/10.12989/anr.2023.14.2.127.
  27. Gholami, M., Zare, E., Gorji Azandariani, M. and Moradifard, R. (2021), "Seismic behavior of dual buckling-restrained steel braced frame with eccentric configuration and post-tensioned frame system", Soil Dyn. Earthq. Eng., 151, 106977. https://doi.org/10.1016/j.soildyn.2021.106977.
  28. Gorji Azandariani, A., Gholhaki, M. and Gorji Azandariani, M. (2022a), "Assessment of damage index and seismic performance of steel plate shear wall (SPSW) system", J. Constr. Steel Res., 191, 107157. https://doi.org/10.1016/j.jcsr.2022.107157.
  29. Gorji Azandariani, M., Abdolmaleki, H. and Gorji Azandariani, A. (2020a), "Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs)", Thin Wall. Struct., 151, 106751. https://doi.org/10.1016/j.tws.2020.106751.
  30. Gorji Azandariani, M. and Gholami, M. (2022), "Seismic fragility investigation of hybrid structures BRBF with eccentric-configuration and self-centering frame", J. Constr. Steel Res., 196, 107300. https://doi.org/10.1016/j.jcsr.2022.107300.
  31. Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2020b), "Experimental and numerical investigation of low-yield-strength (LYS) steel plate shear walls under cyclic loading", Eng. Struct., 203, 109866. https://doi.org/10.1016/j.engstruct.2019.109866.
  32. Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2021a), "Hysteresis finite element model for evaluation of cyclic behavior and performance of steel plate shear walls (SPSWs)", Struct., 29, 30-47. https://doi.org/https://doi.org/10.1016/j.istruc.2020.11.009.
  33. Gorji Azandariani, M., Gholhaki, M., Kafi, M.A. and Gorji Azandariani, A. (2022b), "Assessment of cyclic behavior and performance of hybrid linked-column steel plate shear wall system", J. Build. Eng., 58, 104963. https://doi.org/10.1016/j.jobe.2022.104963.
  34. Gorji Azandariani, M., Gholhaki, M., Kafi, M.A., Zirakian, T., Khan, A., Abdolmaleki, H. and Shojaeifar, H. (2021b), "Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)", Steel Compos. Struct., 39(1), 109-123. https://doi.org/10.12989/scs.2021.39.1.109.
  35. Gorji Azandariani, M., Gorji Azandariani, A. and Abdolmaleki, H. (2020c), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Constr. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145.
  36. Gorji Azandariani, M., Kafi, M.A. and Gholhaki, M. (2021c), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build. Eng., 43, 102844. https://doi.org/10.1016/j.jobe.2021.102844.
  37. Gorji Azandariani, M., Rousta, A.M., Usefvand, E., Abdolmaleki, H. and Gorji Azandariani, A. (2021d), "Improved seismic behavior and performance of energy-absorbing systems constructed with steel rings", Struct., 29, 534-548. https://doi.org/10.1016/j.istruc.2020.11.041.
  38. Hassanien Serror, M., Adel Diab, R. and Ahmed Mourad, S. (2014), "Seismic force reduction factor for steel moment resisting frames with supplemental viscous dampers", Earthq. Struct., 7(6), 1171-1186. https://doi.org/10.12989/eas.2014.7.6.1171.
  39. Karimiyan, S., Moghadam, A.S. and Vetr, M.G. (2013), "Seismic progressive collapse assessment of 3-story RC moment resisting buildings with different levels of eccentricity in plan", Earthq. Struct., 5(3), 277-296. https://doi.org/10.12989/eas.2013.5.3.277.
  40. Khorami, M., Khorami, M., Alvansazyazdi, M., Shariati, M., Zandi, Y., Jalali, A. and Tahir, M.M. (2017), "Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)", Earthq. Struct., 13(6), 531-538. https://doi.org/10.12989/eas.2017.13.6.531.
  41. Kim, J. and Baek, D. (2013), "Seismic risk assessment of staggered wall system structures", Earthq. Struct., 5(5), 607-624. https://doi.org/10.12989/eas.2013.5.5.607.
  42. Li, H.N. and Li, G. (2007), "Experimental study of structure with 'dual function' metallic dampers", Eng. Struct., 29(8), 1917-1928. https://doi.org/10.1016/J.ENGSTRUCT.2006.10.007.
  43. MacRae, G.A., Kimura, Y. and Roeder, C. (2004), "Effect of column stiffness on braced frame seismic behavior", J. Struct. Eng. (ASCE), 130(3), 381-391. https://doi.org/10.1061/(asce)0733-9445(2004)130:3(381).
  44. Mirtaheri, M., Sehat, S. and Nazeryan, M. (2018), "Improving the behavior of buckling restrained braces through obtaining optimum steel core length", Struct. Eng. Mech., 65(4), 401-408. https://doi.org/10.12989/sem.2018.65.4.401.
  45. Mohebkhah, A. and Azandariani, M.G. (2015), "Lateral-torsional buckling of delta hollow flange beams under moment gradient", Thin Wall. Struct., 86, 167-173. https://doi.org/10.1016/j.tws.2014.10.011.
  46. Mohebkhah, A. and Azandariani, M.G. (2016), "Lateral-torsional buckling resistance of unstiffened slender-web plate girders under moment gradient", Thin Wall. Struct., 102, 215-221. https://doi.org/10.1016/j.tws.2016.02.001.
  47. Mohebkhah, A. and Azandariani, M.G. (2020), "Shear resistance of retrofitted castellated link beams: Numerical and limit analysis approaches", Eng. Struct., 203, 109864. https://doi.org/10.1016/j.engstruct.2019.109864.
  48. Mualla, I.H. and Belev, B. (2002), "Performance of steel frames with a new friction damper device under earthquake excitation", Eng. Struct., 24(3), 365-371. https://doi.org/10.1016/S0141-0296(01)00102-X.
  49. Nielsen, L.O. and Mualla, I.H. (2002), "A Friction damping system: Low order behavior and design", Byg Rapport No. R030, Danmarks Tekniske Universitet, Kgs. Lyngby, Denmark.
  50. Oh, S.H., Kim, Y.J. and Ryu, H.S. (2009), "Seismic performance of steel structures with slit dampers", Eng. Struct., 31(9), 1997-2008. https://doi.org/10.1016/j.engstruct.2009.03.003.
  51. Park, J., Shirai, K. and Kikuchi, M. (2022), "A seismic mass damper system using scrap tire pads: Loading tests on mechanical properties and numerical assessment of the response control effects", Soil Dyn. Earthq. Eng., 157, 107257. https://doi.org/10.1016/J.SOILDYN.2022.107257.
  52. Patel, C.C. and Jangid, R.S. (2011), "Dynamic response of adjacent structures connected by friction damper", Earthq. Struct., 2(2), 149-169. https://doi.org/10.12989/eas.2011.2.2.149.
  53. Qu, B., Dai, C., Qiu, J., Hou, H. and Qiu, C. (2019), "Testing of seismic dampers with replaceable U-shaped steel plates", Eng. Struct., 179, 625-639. https://doi.org/10.1016/J.ENGSTRUCT.2018.11.016.
  54. Rai, D.C., Annam, P.K. and Pradhan, T. (2013), "Seismic testing of steel braced frames with aluminum shear yielding dampers", Eng. Struct., 46, 737-747. https://doi.org/10.1016/J.ENGSTRUCT.2012.08.027.
  55. Rai, D.C. and Goel, S.C. (2003), "Seismic evaluation and upgrading of chevron braced frames", J. Constr. Steel Res., 59(8), 971-994. https://doi.org/10.1016/S0143-974X(03)00006-3.
  56. Rousta, A.M. and Azandariani, M.G. (2022), "Micro-finite element and analytical investigations of seismic dampers with steel ring plates", Steel Compos. Struct., 43(5), 565. https://doi.org/10.12989/scs.2022.43.5.565.
  57. Rousta, A.M., Gorji Azandariani, M., Safaei Ardakani, M.A. and Shoja, S. (2022), "Cyclic behavior of an energy dissipation system with the vertical steel panel flexural-yielding dampers", Struct., 45, 629-644. https://doi.org/10.1016/j.istruc.2022.09.047.
  58. Rousta, A.M., Shojaeifar, H., Azandariani, M.G., Saberiun, S. and Abdolmaleki, H. (2021), "Cyclic behavior of an energy dissipation semi-rigid moment steel frames (SMRF) system with LYP steel curved dampers", Struct. Eng. Mech., 80(2), 129. https://doi.org/10.12989/sem.2021.80.2.129.
  59. Sahoo, D.R., Singhal, T., Taraithia, S.S. and Saini, A. (2015), "Cyclic behavior of shear-and-flexural yielding metallic dampers", J. Constr. Steel Res., 114, 247-257. https://doi.org/10.1016/j.jcsr.2015.08.006.
  60. Sano, T., Shirai, K., Suzui, Y. and Utsumi, Y. (2019), "Loading tests of a brace-type multi-unit friction damper using coned disc springs and numerical assessment of its seismic response control effects", Bull. Earthq. Eng., 17(9), 5365-5391. https://doi.org/10.1007/s10518-019-00671-8.
  61. Sano, T., Shirai, K., Suzui, Y. and Utsumi, Y. (2020), "Dynamic loading tests and seismic response analysis of a stud-type damper composed of multiple friction units with disc springs", Earthq. Eng. Struct. Dyn., 49(13), 1259-1280. https://doi.org/10.1002/EQE.3289.
  62. Shirai, K., Horii, J. and Fujimori, T. (2021), "Optimal sliding force characteristics of friction dampers for seismic response control of building structures considering sway-rocking motion", Soil Dyn. Earthq. Eng., 149, 106892. https://doi.org/10.1016/J.SOILDYN.2021.106892.
  63. Shirai, K., Ito, T. and Kikuchi, M. (2022a), "Seismic response control effects for reinforced-concrete buildings incorporating a passive variable friction device", J. Build. Eng., 62, 105388. https://doi.org/10.1016/J.JOBE.2022.105388.
  64. Shirai, K., Nagaoka, A., Fujita, N. and Fujimori, T. (2019), "Optimal damper slip force for vibration control structures incorporating friction device with sway-rocking motion obtained using shaking table tests", Adv. Civil Eng., 2019, 1-13. https://doi.org/10.1155/2019/6356497.
  65. Shirai, K., Sano, T. and Suzui, Y. (2022b), "Energy response of a passive variable friction damper and numerical simulation on the control effects for high-rise buildings", Struct. Control Heal. Monit., 29(12), e3124. https://doi.org/10.1002/STC.3124.
  66. Sun, T., Peng, L., Ji, X. and Li, X. (2023), "Development of a negative stiffness friction damping device with an amplification mechanism", Eng. Struct., 275, 115286. https://doi.org/10.1016/J.ENGSTRUCT.2022.115286.
  67. Talebizadehsardari, P., Eyvazian, A., Gorji Azandariani, M., Nhan Tran, T., Kumar Rajak, D. and Babaei Mahani, R. (2020), "Buckling analysis of smart beams based on higher order shear deformation theory and numerical method", Steel Compos. Struct., 35(5), 635-640. https://doi.org/https://doi.org/10.12989/scs.2020.35.5.635.
  68. Usefvand, M., Rousta, A.M., Azandariani, M.G. and Abdolmaleki, H. (2021), "Steel dual-ring dampers: Micro-finite element modelling and validation of cyclic behavior", Smart Struct. Syst., 28(4), 579. https://doi.org/10.12989/sss.2021.28.4.579.
  69. Wang, B., Han, Q. and Jia, J. (2019), "Seismic response analysis of isolated offshore bridge with friction sliding bearings", Earthq. Struct., 16(6), 641-654. https://doi.org/10.12989/eas.2019.16.6.641.
  70. Xu, L.Y., Nie, X. and Fan, J.S. (2016), "Cyclic behaviour of low-yield-point steel shear panel dampers", Eng. Struct., 126, 391-404. https://doi.org/10.1016/J.ENGSTRUCT.2016.08.002.
  71. Xu, L., Li, Z. and Lv, Y. (2014), "Nonlinear seismic damage control of steel frame-steel plate shear wall structures using MR dampers", Earthq. Struct., 7(6), 937-953. https://doi.org/10.12989/eas.2014.7.6.937.
  72. Zare, E., Gholami, M., Usefvand, E. and Gorji Azandariani, M. (2023), "Performance-based plastic design of buckling-restrained braced frames with eccentric configurations", Earthq. Struct., 24(5), 317-331. https://doi.org/10.12989/eas.2023.24.5.317.
  73. Zhang, C., Zhang, Z. and Shi, J. (2012), "Development of high deformation capacity low yield strength steel shear panel damper", J. Constr. Steel Res., 75, 116-130. https://doi.org/10.1016/J.JCSR.2012.03.014.
  74. Zirakian, T. and Zhang, J. (2016), "Study on seismic retrofit of structures using SPSW systems and LYP steel material", Earthq. Struct., 10(1), 1-23. https://doi.org/10.12989/eas.2016.10.1.001.