DOI QR코드

DOI QR Code

Response modification and seismic design factors of RCS moment frames based on the FEMA P695 methodology

  • Mohammad H. Habashizadeh (Department of Civil Engineering, Islamic Azad University- Marand Branch) ;
  • Nima Talebian (School of Sustainable Development, Faculty of Society and Design, Bond University) ;
  • Dane Miller (School of Sustainable Development, Faculty of Society and Design, Bond University) ;
  • Martin Skitmore (School of Sustainable Development, Faculty of Society and Design, Bond University) ;
  • Hassan Karampour (School of Engineering and Built Environment, Griffith University)
  • Received : 2022.11.30
  • Accepted : 2023.11.07
  • Published : 2023.10.10

Abstract

Due to their efficient use of materials, hybrid reinforced concrete-steel (RCS) systems provide more practical and economic advantages than traditional steel and concrete moment frames. This study evaluated the seismic design factors and response modification factor 'R' of RCS composite moment frames composed of reinforced concrete (RC) columns and steel (S) beams. The current International Building Code (IBC) and ASCE/SEI 7-05 classify RCS systems as special moment frames and provide an R factor of 8 for these systems. In this study, seismic design parameters were initially quantified for this structural system using an R factor of 8 based on the global methodology provided in FEMA P695. For analyses, multi-story (3, 5, 10, and 15) and multi-span (3 and 5) archetypes were used to conduct nonlinear static pushover analysis and incremental dynamic analysis (IDA) under near-field and far-field ground motions. The analyses were performed using the OpenSees software. The procedure was reiterated with a larger R factor of 9. Results of the performance evaluation of the investigated archetypes demonstrated that an R factor of 9 achieved the safety margin against collapse outlined by FEMA P695 and can be used for the design of RCS systems.

Keywords

References

  1. ACI 318-19 (2019), "Building Code Requirements for Structural Concrete", American Concrete Institute.
  2. AISC, ANSI/AISC 360-16 (2016), "Specification for Structural Steel Buildings", Chicago.
  3. Alizadeh, S., Attari, N.K. and Kazemi, M.T. (2013), "The seismic performance of new detailing for RCS connections", J. Constr. Steel Res., 91, 76-88. https://doi.org/10.1016/j.jcsr.2013.08.010.
  4. Alizadeh, S., Attari, N.K. and Kazemi, M.T. (2015), "Experimental investigation of RCS connections performance using self-consolidated concrete", J. Constr. Steel Res., 114, 204-216. https://doi.org/10.1016/j.jcsr.2015.07.026
  5. ANSI/AISC 341-10 (2010), Seismic Provisions for Structural Steel Buildings", Chicago.
  6. ASCE 41-06 (2007), Seismic Rehabilitation of Existing Buildings, American Society of Civil Engineers.
  7. ASCE 7-05 (2006), "Minimum Design Loads for Buildings and other structures", American Society of Civil Engineers.
  8. ASCE Task Committee (1994), "Guidelines for Design of Joints Between Steel Beams and Reinforced Concrete Columns", J. Struct. Eng., 120(8), 2330-2357. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:8(2330)
  9. Azar, B.F., Ghaffarzadeh, H., and Talebian, N. (2013), "Seismic performance of composite RCS special moment frames", KSCE J. Civ. Eng., 17(2), 450-457. https://doi.org/10.1007/s12205-013-1431-5.
  10. Baker, J.W. and Allin Cornell, C. (2006), "Spectral shape, epsilon and record selection", Earth. Eng. Struct. Dyn., 35(9), 1077-1095. https://doi.org/10.1002/eqe.571
  11. Bracci, J.M., Jr, W.P.M. and Bugeja, M.N. (1999), "Seismic design and constructability of RCS special moment frames", J. Struct. Eng., 125(4), 385-392. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:4(385).
  12. Bugeja, M.N., Bracci, J.M. and Moore Jr, W.P. (2000), "Seismic behavior of composite RCS frame systems", J. Struct. Eng., 126(4), 429-436. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:4(429).
  13. Chen, C.-H., Lai, W.-C., Cordova, P., Deierlein, G.G. and Tsai, K.-C. (2004), "Pseudo-dynamic test of full-scale RCS frame: part I-design, construction, testing", Struct. Congress, Nashville, May.
  14. Cheng, C.-T. and Chen, C.-C. (2005), "Seismic behavior of steel beam and reinforced concrete column connections", J. Constr. Steel Res., 61(5), 587-606. https://doi.org/10.1016/j.jcsr.2004.09.003.
  15. Chou, C.-C. and Chen, J.-H. (2010), "Tests and analyses of a full-scale post-tensioned RCS frame subassembly", J. Constr. Steel Res., 66(11), 1354-1365. https://doi.org/10.1016/j.jcsr.2010.04.013.
  16. Cordova, P., Chen, C.-H., Lai, W.-C., Deierlein, G.G. and Tsai, K.-C. (2004), "Pseudo-dynamic test of full-scale RCS frame: part II-analysis and design implications", Structures Congress, Nashville, May.
  17. Cordova, P.P. (2005), "Validation of the seismic performance of composite RCS frames: Full-scale testing analysis and seismic design", Ph.D. Dissertation, Stanford University.
  18. Deierlein, G.G. (1988), "Design of moment connections for composite framed structures", Ph.D. Dissertation, The University of Texas, Austin.
  19. Doost, R.B. and Khaloo, A. (2021), "Steel web panel influence on seismic behavior of proposed precast RCS connections", Struct., 32, 87-95. https://doi.org/10.1016/j.istruc.2021.02.057.
  20. Dung Le, D., Nguyen, X.-H. and Nguyen, Q.-H. (2020), "Cyclic testing of a composite joint between a reinforced concrete column and a steel beam", Appl. Sci., 10(7), 2385. https://doi.org/10.3390/app10072385.
  21. Eghbali, N.B. and Mirghaderi, S.R. (2017), "Experimental investigation of steel beam to RC column connection via a through-plate", J. Constr. Steel Res., 133, 125-140. https://doi.org/10.1016/j.jcsr.2017.02.007.
  22. Fargier-Gabaldon, L.B. and Parra-Montesinos, G.J. (2006), "Behavior of reinforced concrete column-steel beam roof level T-connections under displacement reversals", J. Struct. Eng., 132(7), 1041-1051. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:7(1041).
  23. FEMA, P695 (2009), Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency, Washington, D.C.
  24. Ghods, S., Kheyroddin, A., Nazeryan, M.,Mirtaheri, S.M. and Gholhaki, M. (2016), "Nonlinear behavior of connections in RCS frames with bracing and steel plate shear wall", Steel Comp. Struct., 22(4), 915-935. https://doi.org/10.12989/scs.2016.22.4.915.
  25. Golestani, Y., Rajabi, E. and Rajabi Soheyli, R. (2023), "Evaluation of the response modification factor of steel buildings with linked columns frame system", Soil Dyn. Earth. Eng., 164, 107581. https://doi.org/10.1016/j.soildyn.2022.107581
  26. Griffis, L.G. (1992), "Composite frame construction", Constructional Steel Design: An International Guide, 523-553.
  27. Habashizadeh Asl, M.H., Chenaglou, M.R., Abedi, K., and Afshin, H. (2013), "3D finite element modelling of composite connection of RCS frame subjected to cyclic loading", Steel Comp. Struct., 15(3), 281-298. https://doi.org/10.12989/scs.2013.15.3.281
  28. Habashizadeh Asl, M.H. (2011), "Effects of isotropic and kinematic hardening on the RCS connection due to cyclic loading", Int. J. Earth Sci. Eng., 4, 534-537.
  29. International Code Council (ICC), (2006), International Building Code (IBC), Falls Church (VA). 
  30. Jafari, R., Attari, N.K., Nikkhoo, A., and Alizadeh, S. (2019), "Lateral performance of CRCS connections with tube plate", Steel and Comp. Struct., 32(1), 37-57. https://doi.org/10.12989/scs.2019.32.1.037
  31. Jafari, R., Attari, N.K., Nikkhoo, A., and Alizadeh, S. (2020), "Simplified method for modeling reinforced concrete column-steel beam connections with tube plate", Advances in Struct. Eng., 23(11), 2292-2304. https://doi.org/10.1177/1369433220906224
  32. Kanno, R. and Deierlein, G.G. (1996), "Seismic behavior of composite (RCS) beam-column joint subassemblies", Composite construction in steel and concrete III, ASCE.
  33. Kanno, R. and Deierlein, G.G. (2002), "Design model of joints for RCS frames", Composite construction in steel and concrete IV, ASCE.
  34. Kanno, R. (1993), "Strength, deformation, and seismic resistance of joints between steel beams and reinforced concrete columns", (Volumes I and II), Cornell University.
  35. Khaloo, A. and Doost, R.B. (2018), "Seismic performance of precast RC column to steel beam connections with variable joint configurations", Eng. Struct., 160, 408-418. https://doi.org/10.1016/j.engstruct.2018.01.039
  36. Kheyroddin, A., and Mashhadiali, N. (2018), "Response modification factor of concentrically braced frames with hexagonal pattern of braces", J. Constr. Steel Res., 148, 658-668. https://doi.org/10.1016/j.jcsr.2018.06.024
  37. Kuramoto, H. and Nishiyama, I. (2004), "Seismic performance and stress transferring mechanism of through-column-type joints for composite reinforced concrete and steel frames", J. Struct. Eng., 130(2), 352-360. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(352)
  38. Lee, H.-J., Park, H.-G., Hwang, H.-J., and Kim, C.-S. (2019), "Cyclic lateral load test for RC column-steel beam joints with simplified connection details", J. Struct. Eng., 145(8), 04019075. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002369
  39. Li, G.Q., Gu, F., Jiang, J., and Sun, F. (2017), "Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (II): theoretical study", Steel and Comp. Struct., 23(4), 409-420. https://doi.org/10.12989/scs.2017.23.4.409
  40. Li, W., Li, Q.N., and Jiang, W.S. (2013), "Nonlinear finite element analysis of behaviors of steel beam-continuous compound spiral stirrups reinforced concrete column frame structures", The Struct. Des. Tall Spe. Build., 22(15), 1119-1138. https://doi.org/10.1002/tal.758
  41. Li, W., Li, Q.-n., and Jiang, W.-s. (2012), "Parameter study on composite frames consisting of steel beams and reinforced concrete columns", J. Constr. Steel Res., 77: 145-162. https://doi.org/10.1016/j.jcsr.2012.04.007
  42. Li, W., Li, Q.-n., Jiang, W.-s., and Jiang, L. (2011), "Seismic performance of composite reinforced concrete and steel moment frame structures-state-of-the-art" Comp. Part B: Eng., 42(2), 190-206. https://doi.org/10.1016/j.compositesb.2010.10.008
  43. Li, W., Xiong, J., Wu, L., and Yang, K. (2020), "Experimental study and numerical analysis on seismic behavior of composite RCS frames", Struct. Conc., 21(5), 2044-2065. https://doi.org/10.1002/suco.201900068
  44. Liang, X. and Parra-Montesinos, G.J. (2004), "Seismic behavior of reinforced concrete column-steel beam subassemblies and frame systems", J. Struct. Eng., 130(2), 310-319. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(310)
  45. Liang, X. (2003), "Seismic behavior of RCS beam-column subassemblies and frame systems designed following a joint deformation-based capacity design approach", University of Michigan.
  46. Ma, H., Jiang, W., and Cho, C. (2011), "Experimental study on two types of new beam-to-column connections", Steel and Comp. Struct., 11(4), 291-305. https://doi.org/10.12989/scs.2011.11.4.291
  47. Men, J., Xiong, L., Wang, J., and Fan, G. (2021), "Effect of different RC slab widths on the behavior of reinforced concrete column and steel beam-slab subassemblies", Eng. Struct., 229, 111639. https://doi.org/10.1016/j.engstruct.2020.111639
  48. Men, J., Zhang, Y., Guo, Z. and Shi, Q. (2015), "Experimental research on seismic behavior of a composite RCS frame", Steel Comp. Struct., 18(4), 971-983. https://doi.org/10.12989/scs.2015.18.4.971.
  49. Men, J., Guo, Z. and Shi, Q. (2015), "Experimental research on seismic behavior of novel composite RCS joints", Steel Comp. Struct., 19(1), 209-221. https://doi.org/10.12989/scs.2015.19.1.209
  50. Mirghaderi, S.R., Eghbali, N.B. and Ahmadi, M.M. (2016), "Moment-connection between continuous steel beams and reinforced concrete column under cyclic loading", J. Constr. Steel Res., 118, 105-119. https://doi.org/10.1016/j.jcsr.2015.11.002.
  51. MN, B. (1999), Seismic Behavior of Composite Moment Resisting frame systems", Texas A&M University, USA.
  52. Nahar, M., Islam, K., Muntasir Billah, A.H.M. (2020), "Seismic collapse safety assessment of concrete beam-column joints reinforced with different types of shape memory alloy rebars", J. Build. Eng., 29, 101106. https://doi.org/10.1016/j.jobe.2019.101106
  53. Nguyen, X.H., Nguyen, Q.-H., Le, D.D. and Mirza, O. (2017), "Experimental study on seismic performance of new RCS connection", Struct., 9, 53-62. https://doi.org/10.1016/j.istruc.2016.09.006.
  54. Nishiyama, I., Kuramoto, H. and Noguchi, H. (2004), "Guidelines: seismic design of composite reinforced concrete and steel buildings", J. Struct. Eng., 130(2), 336-342. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(336)
  55. Noguchi, H. and Uchida, K. (2004), "Finite element method analysis of hybrid structural frames with reinforced concrete columns and steel beams", J. Struct. Eng., 130(2), 328-335. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(328).
  56. Open System for Earthquake Engineering Simulation (OpenSees) Framework. Pacific Earthquake Engineering Research Center, University of California, Berkeley.
  57. Pan, Z., Si, Q., Zhou, Z., Zhang, Y., Zhu, Y., and Chen, X. (2017), "Experimental and numerical investigations of seismic performance of hybrid joints with bolted connections", J. Constr. Steel Res., 138, 867-876. https://doi.org/10.1016/j.jcsr.2017.09.001.
  58. Parra-Montesinos, G. and Wight, J.K. (2001), "Modeling shear behavior of hybrid RCS beam-column connections", J. Struct. Eng., 127(1), 3-11. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:1(3)
  59. Parra-Montesinos, G. and Wight, J.K. (2000), "Seismic response of exterior RC column-to-steel beam connections", J. Struct. Eng., 126(10), 1113-1121. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1113)
  60. Parra-Montesinos, G., Liang, X. and Wight, J. (2003), "Towards deformation-based capacity design of RCS beam-column connections", Eng. Struct., 25(5), 681-690. https://doi.org/10.1016/S0141-0296(02)00177-3.
  61. Sheikh, T.M., Deierlein, G.G., Yura, J.A. and Jirsa, J.O. (1989), "Beam-column moment connections for composite frames: Part 1", J. Struct. Eng., 115(11), 2858-2876. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:11(2858)
  62. Sheikh, T.M. (1987), Moment Connections Between Steel Beams and concrete columns", The University of Texas, Austin.
  63. Siddiquee, K. N., Muntasir Billah, A.H.M., and Issa, A. (2021), "Seismic collapse safety and response modification factor of concrete frame buildings reinforced with superelastic shape memory alloy (SMA) rebar", J. Build. Eng., 42, 102468. https://doi.org/10.1016/j.jobe.2021.102468.
  64. Tang, H., Deng, X., Jia, Y., Xiong, J. and Peng, C. (2019), "Study on the progressive collapse behavior of fully bolted RCS beam-to-column connections", Eng. Struct., 199, 109618. https://doi.org/10.1016/j.engstruct.2019.109618.
  65. Tao, Y., Zhao, W., Shu, J. and Yang, Y. (2021), "Nonlinear finite-element analysis of the seismic behavior of RC column-steel beam connections with shear failure mode", J. Struct. Eng., 147(10), 04021160. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003132.
  66. Wu, C.L., Wang, Q.H. and Li, Z.Q. (2021), "FEM analysis of the modular prefabricated steel-concrete composite beam-column internal joint under reciprocating action", Steel Comp. Struct., 41(1), 45-64. https://doi.org/10.12989/scs.2021.41.1.045.
  67. Wu, Y., Xiao, Y. and Anderson, J. (2009), "Seismic behavior of PC column and steel beam composite moment frame with posttensioned connection", J. Struct. Eng., 135(11), 1398-1407. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000062.
  68. Xiong, L., Men, J., Ren, R. and Lei, M. (2018), "Experimental investigation on the seismic behavior of reinforced concrete column-steel beam subassemblies", Steel Comp. Struct., 28(4), 471-482.