DOI QR코드

DOI QR Code

Multiaxial ratcheting assessment of Z2CND18.12N steel using modified A-V hardening rule

  • Xiaohui Chen (School of Control Engineering, Northeastern University at Qinhuangdao) ;
  • Yang Zhou (School of Control Engineering, Northeastern University at Qinhuangdao) ;
  • Wenwu Liu (School of Control Engineering, Northeastern University at Qinhuangdao) ;
  • Xu Zhao (School of Control Engineering, Northeastern University at Qinhuangdao)
  • 투고 : 2021.08.02
  • 심사 : 2023.07.11
  • 발행 : 2023.10.10

초록

Based on Ahmadzadeh-Varvani hardening rule (A-V model), multiaxial ratcheting effect of Z2CND18.12N austenitic stainless steel is simulated by ABAQUS with user subroutine UMAT. The results show that the predicted results of the origin multiaxial A-V model are lower than the experimental data, and it is difficult to control ratcheting strain rate. In order to improve the predicted capability of A-V model, the A-V model is modified. In this study. Moreover, under the assumption of the von Mises yield criterion and normal plasticity flow rule, we develop a numerical algorithm of plastic strain with the improved model to implement the finite element calculation of the model. Internal iteration in the numerical algorithm was implemented with the Euler backward method, which calculated the trial strain for each equilibrium iteration using the consistent tangent matrix. With a user subroutine, the proposed model is programmed into ABAQUS for a user - executable version. By simulating the uniaxial ratcheting of a round bar made of Z2CND18.12N austenitic stainless steel, we observe that the predicted results simulated by ABAQUS with UMAT are compared with the experimental data. The predicted results of the improved multiaxial A-V model are consistent well with the experimental data.

키워드

과제정보

This work was partly supported by the Natural Science Foundation of Hebei Province of China (No. E2021501011), Central University Basic Scientific Research Business Expenses (No. N2123028).

참고문헌

  1. Abdel-Karim, M. and Ohno, N. (2000), "Kinematic hardening model suitable for ratcheting with steady-state", Int. J. Plast., 16, 225-240. https://doi.org/10.1016/S0749-6419(99)00052-2.
  2. Ahmadzadeh, G.R. and Varvani-Farahani, A. (2013a), "Ratcheting assessment of materials based on the modified Armstrong-Frederick hardening rule at various uniaxial stress levels", Fatigue Fract. Eng. M., 36, 1232-1245. https://doi.org/10.1111/ffe.12059.
  3. Ahmadzadeh, G.R. and Varvani-Farahani, A. (2013b), "Ratcheting assessment of steel alloys under step-loading conditions", Mater. Des., 51, 231-241. https://doi.org/10.1016/j.matdes.2013.04.047.
  4. Armstrong, P. and Frederick, C. (1966), "A mathematical representation of the multiaxial bauchinger effect", CEGB Report No RD/BN 731.
  5. Bari, S. and Hassan, T. (2000), "Anatomy of coupled constitutive models for ratcheting simulation". Int. J. Plast., 16, 381-409. https://doi.org/10.1016/S0749-6419(99)00059-5.
  6. Bari, S. and Hassan, T. (2002), "An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation". Int. J. Plast., 18, 873-894. https://doi.org/10.1016/S0749-6419(01)00012-2.
  7. Bower, A.F. (1989), "Cyclic hardening properties of hard-drawn copper and rail steel", J. Mech. Phys. Solids, 37,455-70. https://doi.org/10.1016/0022-5096(89)90024-0.
  8. Chaboche, J.L., Dang-Van, K. and Cordier, G. (1979), "Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel", Proc. of the 5th International Conference on SMiRT, Div. L, Berlin, Germany. https://ci.nii.ac.jp/naid/10008660445/.
  9. Chaboche, J.L. (1986), "Time independent constitutive theories for cyclic plasticity", Int. J. Plast., 2, 149-188. https://doi.org/10.1016/0749-6419(86)90010-0.
  10. Chaboche, J.L. (1989), "Constitutive equations for cyclic plasticity and cyclic viscoplasticity", Int. J. Plast., 5, 247-302. https://doi.org/10.1016/0749-6419(89)90015-6.
  11. Chaboche, J.L. and Nouailhas, D. (1989), "A unified constitutive model for cyclic viscoplasticity and its applications to various stainless steels", J. Engng. Mater. Technol., 111, 424-430. https://doi.org/10.1115/1.3226490.
  12. Chaboche, J.L. (1991), "On some modifications of kinematic hardening to improve the description of ratcheting effects", Int. J. Plast., 7, 661-678. https://doi.org/10.1016/0749-6419(91)90050-9.
  13. Chen, X., Jiao, R. and Kim, K.S. (2003), "Simulation of ratcheting strain to a high number of cycles under multiaxial loading", Int. J. Solids Struct., 40, 7449-7461. https://doi.org/10.1016/j.ijsolstr.2003.08.009.
  14. Chen, X. and Jiao, R. (2004), "Modified kinematic hardening rule for multiaxial ratcheting prediction", Int. J. Plast., 20, 871-898. https://doi.org/10.1016/j.ijplas.2003.05.005.
  15. Chen, X., Jiao, R. and Kim, K.S. (2005), "On the Ohno-Wang kinematic hardening rules for multiaxial ratcheting modeling of medium carbon steel", Int. J. Plast., 6, 161-184. https://doi.org/10.1016/j.ijplas.2004.05.005.
  16. Chen, X.H., Gao, B.J. and Chen, X. (2015), "Evaluation of AF type cyclic plasticity models in ratcheting simulation of pressurized elbow pipes under reversed bending", Steel Compos. Struct., 18(1), 29-50. http://dx.doi.org/10.12989/scs.2016.21.4.703.
  17. Chen X.H., Chen X., Yu D.J. and Gao B.J. (2013), "Recent progresses in experimental investigation and finite element analysis of ratcheting in pressurized piping", Int. J. Pres. Ves. Pip., 101, 113-142. https://doi.org/10.1016/j.ijpvp.2012.10.008.
  18. Foroutan, M., Ahmadzadeh, G.R. and Varvani-Farahani, A. (2018), "Axial and hoop ratcheting assessment in pressurized steel elbow pipes subjected to bending cycles", Thin Wall Struct., 123, 317-323. https://doi.org/10.12989/scs.2016.21.4.703.
  19. Halama, R. (2008), "A modification of abdelkarim-ohno model for ratcheting simulations", Technical Gazette, 15(3), 3-9. http://hrcak.srce.hr/file/44740.
  20. Hamidinejad, S.M. and Varvani-Farahani, A. (2015), "Ratcheting assessment of steel samples under various non-proportional loading paths by means of kinematic hardening rules", Mater. Des., 85, 367-376. https://doi.org/10.1016/j.matdes.2015.06.153.
  21. Han, J., Marimuthu, K.P., Koo, S. and Lee, H. (2020), "Numerical implementation of modified Chaboche kinematic hardening model for multiaxial ratcheting", Comp. Strucs., 231, 106222. https://doi.org/10.1016/j.compstruc.2020.106222.
  22. Islam, N. and Hassan, T. (2019), "Development of a novel constitutive model for improved structural integrity analysis of piping components", Int. J. Pres. Ve.s Pip., 177, 103989. https://doi.org/10.1016/j.ijpvp.2019.103989.
  23. Jiang, Y.Y. and Sehitoglu, H. (1996), "Modeling of cyclic ratcheting plasticity, part I: development of constitutive relations", J. Pres. Ves. - Trans. ASME, 63, 720-725. https://doi.org/10.1115/1.2823355.
  24. Jiang, Y.Y. and Sehitoglu, H. (1996), "Modeling of cyclic ratcheting plasticity, part II: comparison of model simulations with experiments ", J. Pres. Ves. - Trans. ASME, 63, 726-733. https://doi.org/10.1115/1.2823356.
  25. Kang, G.Z. (2004), "A viscoplastic constitutive model for ratcheting of cyclically stable materials and its finite element implementation", Mech. Mater., 36 (4), 299-312. https://doi.org/10.1016/S0167-6636(03)00024-3.
  26. Lu, M.W. and Xu, H. (2006), "Discussion on some important problems of design by analysis", J. Pres. Ves. (China), 23(1), 15-19.
  27. McDowell, D.L. (1995), "Stress state dependence of cyclic ratcheting behavior of two rail steels", Int. J. Plast., 11, 397-421. https://doi.org/10.1016/S0749-6419(95)00005-4.
  28. Ohno, N. and Wang, J.D. (1993), "Kinematic hardening rules with critical state of dynamic recovery, part I: formulations and basic features for ratcheting behavior", Int. J. Plast., 9, 375-390. https://doi.org/10.1016/0749-6419(93)90042-O.
  29. Ohno, N. and Wang, J.D. (1993), "Kinematic Hardening Rules With Critical State of Dynamic Recovery. Part II: Application to Experiments of Ratcheting Behavior", Int. J. Plast., 9, 391-403. https://doi.org/10.1016/0749-6419(93)90043-P.
  30. Rahman, S.M., Hassan, T. and Corona, E. (2008), "Evaluation of cyclic plasticity models in ratcheting simulation of straight pipes under cyclic bending and steady internal pressure", Int. J. Plast., 24, 1756-1791. https://doi.org/10.1016/j.ijplas.2008.02.010.
  31. Sun, X.Y., Xing, R.S. Yu, W.W. and Chen, X. (2020 a), "Uniaxial ratcheting deformation of 316LN stainless steel with dynamic strain aging: Experiments and simulation", Int. J. Solids Struct., 207, 196-205. https://doi.org/10.1016/j.ijsolstr.2020.10.017.
  32. Sun, X.Y., Xing, R.S. and Chen, X. (2020b), "Multiaxial ratcheting deformation of 316LN stainless steel at elevated temperatures". ASME PVP, 21209. https://doi.org/10.1115/PVP2020-21209.
  33. Yadav, R.K. and Ajit, K.P. (2021), "Recent advancement in the experimental study of ratcheting: A critical review", AIP Conference Proceedings, 2341, 020037. https://doi.org/10.1063/5.0050007.